Skip to main content

The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

It is well-know that the Chvátal-Gomory (CG) closure of a rational polyhedron is a rational polyhedron. In this paper, we show that the CG closure of a bounded full-dimensional ellipsoid, described by rational data, is a rational polytope. To the best of our knowledge, this is the first extension of the polyhedrality of the CG closure to a non-polyhedral set. A key feature of the proof is to verify that all non-integral points on the boundary of ellipsoids can be separated by some CG cut. Given a point u on the boundary of an ellipsoid that cannot be trivially separated using the CG cut parallel to its supporting hyperplane, the proof constructs a sequence of CG cuts that eventually separates u. The polyhedrality of the CG closure is established using this separation result and a compactness argument. The proof also establishes some sufficient conditions for the polyhedrality result for general compact convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. In: Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (September 2006)

    Google Scholar 

  2. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Mathematical Programming 102, 457–493 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atamtürk, A., Narayanan, V.: Cuts for conic mixed-integer programming. In: Fischetti and Williamson [24], pp. 16–29

    Google Scholar 

  4. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Research Report BCOL.07.04, IEOR, University of California-Berkeley, October 2007, Forthcoming in Mathematical Programming (2007)

    Google Scholar 

  5. Atamtürk, A., Narayanan, V.: The submodular 0-1 knapsack polytope. Discrete Optimization 6, 333–344 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Mathematical Programming 122, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Programming 113, 219–240 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Belotti, P., Lee, J., Liberti, L., Margot, F., Waechter, A.: Branching and bound tightening techniques for non-convex MINLP. Optimization Methods and Software 24, 597–634 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Waechter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization 5, 186–204 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs, Technical Report 1664, Computer Sciences Department, University of Wisconsin-Madison (October 2009)

    Google Scholar 

  11. Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\)-Chvátal-Gomory cuts. Mathematical Programming 74, 221–235 (1996)

    MathSciNet  Google Scholar 

  12. Caprara, A., Letchford, A.N.: On the separation of split cuts and related inequalities. Mathematical Programming 94, 279–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ceria, S., Soares, J.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming 86, 595–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Çezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical Programming 104, 179–202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chvatal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial optimization. John Wiley and Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  17. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Mathematical Programming 58, 155–174 (1990)

    Article  MathSciNet  Google Scholar 

  18. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory closure of strictly convex sets. Working paper, Geogia Institute of Technology (2010)

    Google Scholar 

  19. Dash, S., Günlük, O., Lodi, A.: On the MIR closure of polyhedra. In: Fischetti and Williamson [24], pp. 337–351

    Google Scholar 

  20. Dash, S., Günlük, O., Lodi, A.: MIR closures of polyhedral sets. Mathematical Programming 121, 33–60 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eisenbrand, F.: On the membership problem for the elementary closure of a polyhedron. Combinatorica 19, 297–300 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fischetti, M., Lodi, A.: Optimizing over the first Chvàtal closure. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 12–22. Springer, Heidelberg (2005)

    Google Scholar 

  23. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathematical Programming, Series B 110, 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fischetti, M., Williamson, D.P. (eds.): IPCO 2007. LNCS, vol. 4513. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  25. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming 106, 225–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Recent advances in mathematical programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  28. Grossmann, I., Lee, S.: Generalized convex disjunctive programming: Nonlinear convex hull relaxation. Computational Optimization and Applications 26, 83–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex quadratic transportation-cost UFL, IBM Research Report RC24213, IBM, Yorktown Heights, NY (March 2007)

    Google Scholar 

  30. Günlük, O., Linderoth, J.: Perspective relaxation of mixed integer nonlinear programs with indicator variables. In: Lodi, et al. (eds.) [38], pp. 1–16

    Google Scholar 

  31. Günlük, O., Linderoth, J.: Perspective relaxation of mixed integer nonlinear programs with indicator variables. Mathematical Programming, Series B (to appear 2009)

    Google Scholar 

  32. Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. IBM Research Report RC24820, IBM, Yorktown Heights, NY (December 2008); Juenger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.: 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys. Springer, Heidelberg (to appear 2010), ISBN 3540682740.

    Google Scholar 

  33. Jeroslow, R.: There cannot be any algorithm for integer programming with quadratic constraints. Operations Research 21, 221–224 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  34. Letchford, A.N., Pokutta, S., Schulz, A.S.: On the membership problem for the {0, 1/2}-closure. Working paper, Lancaster University (2009)

    Google Scholar 

  35. Letchford, A.N., Sørensen, M.M.: Binary positive semidefinite matrices and associated integer polytopes. In: Lodi, et al. (eds.) [38], pp. 125–139

    Google Scholar 

  36. Leyffer, S., Linderoth, J.T., Luedtke, J., Miller, A., Munson, T.: Applications and algorithms for mixed integer nonlinear programming. Journal of Physics: Conference Series 180 (2009)

    Google Scholar 

  37. Leyffer, S., Sartenaer, A., Wanufelle, E.: Branch-and-refine for mixed-integer nonconvex global optimization. In: Preprint ANL/MCS-P1547-0908, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (September 2008)

    Google Scholar 

  38. Lodi, A., Panconesi, A., Rinaldi, G. (eds.): IPCO 2008. LNCS, vol. 5035. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  39. Richard, J.-P.P., Tawarmalani, M.: Lifting inequalities: a framework for generating strong cuts for nonlinear programs. Mathematical Programming 121, 61–104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer quadratically constrained programs. In: Lodi, et al. (eds.) [38], pp. 17–33

    Google Scholar 

  41. Schrijver, A.: On cutting planes. Annals of Discrete Mathematics 9, 291–296 (1980); Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II (1979)

    Google Scholar 

  42. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)

    MATH  Google Scholar 

  43. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming 86, 515–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Vielma, J.P.: A constructive characterization of the split closure of a mixed integer linear program. Operations Research Letters 35, 29–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dey, S.S., Vielma, J.P. (2010). The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics