Skip to main content

Hypergraphic LP Relaxations for Steiner Trees

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Könemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following.

Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals.

Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite.

Integrality gap upper bounds: We show an upper bound of \(\sqrt{3} \doteq 1.729\) on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ≐ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borchers, A., Du, D.: The k-Steiner ratio in graphs. SIAM J. Comput. 26(3), 857–869 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for Steiner tree. In: Proc. 42nd STOC (to appear 2010)

    Google Scholar 

  3. Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New geometry-inspired relaxations and algorithms for the metric Steiner tree problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 344–358. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Chakrabarty, D., Könemann, J., Pritchard, D.: Hypergraphic LP relaxations for Steiner trees. Technical Report 0910.0281, arXiv (2009)

    Google Scholar 

  5. Chlebík, M., Chlebíková, J.: Approximation hardness of the Steiner tree problem on graphs. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 170–179. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chopra, S.: On the spanning tree polyhedron. Operations Research Letters 8, 25–29 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau of Standards B 71B, 233–240 (1967)

    MathSciNet  Google Scholar 

  8. Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Annals of Discrete Mathematics 1, 185–204 (1977)

    Article  MathSciNet  Google Scholar 

  10. Goemans, M.X.: The Steiner tree polytope and related polyhedra. Math. Program. 63(2), 157–182 (1994)

    Article  MathSciNet  Google Scholar 

  11. Goemans, M.X., Myung, Y.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng, X., Du, D. (eds.) Steiner trees in industries, pp. 235–279. Kluwer Academic Publishers, Norvell (2001)

    Google Scholar 

  13. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Steiner trees in uniformly quasi-bipartite graphs. Inform. Process. Lett. 83(4), 195–200 (2002); Preliminary version appeared as a Technical Report at TU Berlin (2001)

    Google Scholar 

  14. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001); Preliminary version appeared in Proc. 39th FOCS, pp. 448–457 (1998)

    Google Scholar 

  15. Könemann, J., Pritchard, D., Tan, K.: A partition-based relaxation for Steiner trees. Math. Programming (2009) (in press)

    Google Scholar 

  16. Polzin, T.: Algorithms for the Steiner Problem in Networks. PhD thesis, Universität des Saarlandes (February 2003)

    Google Scholar 

  17. Polzin, T., Vahdati Daneshmand, S.: A comparison of Steiner tree relaxations. Discrete Applied Mathematics 112(1-3), 241–261 (2001); Preliminary version appeared at COS 1998 (1998)

    Google Scholar 

  18. Polzin, T., Vahdati Daneshmand, S.: On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31(1), 12–20 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric Steiner tree problem. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 742–751 (1999)

    Google Scholar 

  20. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005); Preliminary version appeared as Improved Steiner tree approximation in graphs at SODA 2000 (2000)

    Google Scholar 

  21. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. In: Proc. 39th STOC, pp. 661–670 (2007)

    Google Scholar 

  22. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth & Brooks/Cole (1986)

    Google Scholar 

  23. Vazirani, V.: Recent results on approximating the Steiner tree problem and its generalizations. Theoret. Comput. Sci. 235(1), 205–216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Warme, D.: Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, University of Virginia (1998)

    Google Scholar 

  25. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Programming 28, 271–287 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chakrabarty, D., Könemann, J., Pritchard, D. (2010). Hypergraphic LP Relaxations for Steiner Trees. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics