Abstract
A fundamental difficulty when dealing with a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region, is that even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away” from any feasible point, yielding weak bounds. We present theory and implementation for an approach that relies on (a) the S-lemma, a major tool in convex analysis, (b) efficient projection of quadratics to lower dimensional hyperplanes, and (c) efficient computation of combinatorial bounds for the minimum distance from a given point to the feasible set, in the case of several significant optimization problems. On very large examples, we obtain significant lower bound improvements at a small computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Tal, A., Nemirovsky, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)
Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Programming 74, 121–140 (1996)
Bienstock, D., Zuckerberg, M.: Subset algebra lift algorithms for 0-1 integer programming. SIAM J. Optimization 105, 9–27 (2006)
Bienstock, D., McClosky, B.:Tightening simple mixed-integer sets with guaranteed bounds (submitted 2008)
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM, Philadelphia (1994)
Cook, W., Kannan, R., Schrijver, A.: Chv’atal closures for mixed integer programs. Math. Programming 47, 155–174 (1990)
De Farias, I., Johnson, E., Nemhauser, G.: A polyhedral study of the cardinality constrained knapsack problem. Math. Programming 95, 71–90 (2003)
Golub, G.H.: Some modified matrix eigenvalue problems. SIAM Review 15, 318–334 (1973)
Golub, G.H., van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)
Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming 106, 225–236 (2006)
Frangioni, A., Gentile, C.: SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP. Oper. Research Letters 35, 181–185 (2007)
Günlük, O., Linderoth, J.: Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 1–16. Springer, Heidelberg (2008)
Moghaddam, B., Weiss, Y., Avidan, S.: Generalized spectral bounds for sparse LDA. In: Proc. 23rd Int. Conf. on Machine Learning, pp. 641–648 (2006)
Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)
Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Review 49, 371–418 (2007)
Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program 77, 273–299 (1997)
Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)
Sturm, J., Zhang, S.: On cones of nonnegative quadratic functions. Mathematics of Operations Research 28, 246–267 (2003)
Miller, W., Wright, S., Zhang, Y., Schuster, S., Hayes, V.: Optimization methods for selecting founder individuals for captive breeding or reintroduction of endangered species (2009) (manuscript)
Yakubovich, V.A.: S-procedure in nonlinear control theory, vol. 1, pp. 62–77. Vestnik Leningrad University (1971)
Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bienstock, D. (2010). Eigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13036-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13035-9
Online ISBN: 978-3-642-13036-6
eBook Packages: Computer ScienceComputer Science (R0)