Skip to main content

Efficient Deterministic Algorithms for Finding a Minimum Cycle Basis in Undirected Graphs

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

We consider the problem of, given an undirected graph G with a nonnegative weight on each edge, finding a basis of the cycle space of G of minimum total weight, where the total weight of a basis is the sum of the weights of its cycles. Minimum cycle bases are of interest in a variety of fields. In [13] Horton proposed a first polynomial-time algorithm where a minimum cycle basis is extracted from a polynomial-size subset of candidate cycles in O(m 3 n) by using Gaussian elimination. In a different approach, due to de Pina [7] and refined in [15], the cycles of a minimum cycle basis are determined sequentially in O(m 2 n + m n 2 logn). A more sophisticated hybrid algorithm proposed in [18] has the best worst-case complexity of O(m 2 n / logn + m n 2).

In this work we revisit Horton’s and de Pina’s approaches and we propose a simple hybrid algorithm which improves the worst-case complexity to O(m 2 n / logn). We also present a very efficient related algorithm that relies on an adaptive independence test à la de Pina. Computational results on a wide set of instances show that the latter algorithm outperforms the previous algorithms by one or two order of magnitude on medium-size instances and allows to solve instances with up to 3000 vertices in a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaldi, E., Iuliano, C., Jurkiewicz, T., Mehlhorn, K., Rizzi, R.: Breaking the O(m 2 n) barrier for minimum cycle bases. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 301–312. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Amaldi, E., Liberti, L., Maculan, N., Maffioli, F.: Edge-swapping algorithms for the minimum fundamental cycle basis problem. Mathematical Methods of Operations Research 69(12), 205–233 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bollobas, B.: Graduate Texts in Mathematics, vol. 184. Springer, Heidelberg (2nd printing)

    Google Scholar 

  5. Brunetta, L., Maffioli, F., Trubian, M.: Solving the feedback vertex set problem on undirected graphs. Discrete Applied Mathematics 101(1-3), 37–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of Amsterdam, The Netherlands (1995)

    Google Scholar 

  8. Deo, N., Prabhu, G., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Trans. on Mathematical Software 8(1), 26–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Erdös, P., Rényi, A.: On random graphs, I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  10. Gleiss, P.M.: Short cycles: minimum cycle bases of graphs from chemistry and biochemistry. Ph.D. thesis, Universität Wien, Austria (2001)

    Google Scholar 

  11. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 200–209. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Hartvigsen, D., Mardon, R.: The all-pairs min cut problem and the minimum cycle basis problem on planar graphs. SIAM J. Discrete Math. 7(3), 403–418 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Computing 16(2), 358–366 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.A.: Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer Science Review 3(4), 199–243 (2009)

    Article  Google Scholar 

  15. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: An \(\tilde{O}(m^2 n)\) algorithm for minimum cycle basis of graphs. Algorithmica 52(3), 333–349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Applied Mathematics 155(3), 337–355 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. ACM Journal of Experimental Algorithmics 11 (2006)

    Google Scholar 

  18. Mehlhorn, K., Michail, D.: Minimum cycle bases: Faster and simpler. Accepted for publication in ACM Trans. on Algorithms (2007)

    Google Scholar 

  19. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica 53(3), 402–424 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs. Uspekhi Mat. Nauk II 19, 171–175 (1964) (in Russian)

    MATH  MathSciNet  Google Scholar 

  22. Zykov, A.A.: Theory of Finite Graphs. Nauka, Novosibirsk (1969) (in Russian)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amaldi, E., Iuliano, C., Rizzi, R. (2010). Efficient Deterministic Algorithms for Finding a Minimum Cycle Basis in Undirected Graphs. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics