Abstract
Recently, many studies have attempted to utilize mobile nodes as resources in mobile grids. Due to their underlying restrictions such as intermittent communication disconnections, limited battery capacity, and so on, mobile nodes are less reliable than wired nodes for job processing. Therefore, it is imperative to find an enhanced job scheduling method to provide stable job processing for mobile grids. In this paper, we propose an efficient job scheduling method in mobile grids, which can determine the suitable number of replicas for a job based on resource (mobile node) information, node status, and access point information. In our job scheduling method, mobile nodes are divided into node groups, and the number of subjobs assigned to each node group is derived from the reliability and performance of the node group. Simulation results show that our scheduling algorithms can reduce the makespan of entire jobs in mobile grid environments compared with random-based job scheduling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Foster, I., Kesselman, C., Tueke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. of High Performance Computing Applications 15(3), 200–222 (2001)
Lee, J., Song, S., Gil, J., Chung, K., Suh, T., Yu, H.: Balanced scheduling algorithm considering availability in mobile grid. In: Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 211–222. Springer, Heidelberg (2009)
Litke, A., Halkos, D., Tserpes, K., Kyriazis, D., Varvarigou, T.: Fault tolerant and prioritized scheduling in OGSA-based mobile grids. Concurr. Comput.: Pract. Exper. 21(4), 533–556 (2009)
Forman, G., Zahorjan, J.: The challenges of mobile computing. IEEE Computer 27(4), 38–47 (1994)
Messig, M., Goscinski, A.: Autonomic system management in mobile grid environments, pp. 49–58. Australian Computer Society (2007)
Litke, A., Skoutas, D., Tserpes, K., Varvarigou, T.: Efficient task replication and management for adaptive fault tolerance in mobile grid environments. Future Generation Computer Systems 23(2), 163–178 (2007)
Gomes, A.T.A., Ziviani, A., Lima, L.S., Endler, M.: DICHOTOMY: A resource discovery and scheduling protocol for multihop ad hoc mobile grids. In: Proc. of 7th IEEE Int. Symp. on Cluster Computing and the Grid, pp. 719–724 (2007)
Yang, C., Huang, C., Hsiao, T.: A data grid file replication maintenance strategy using bayesian networks. In: Proc. of the 2008 Eighth Int. Conf. on Intelligent Systems Design and Applications, vol. 1, pp. 456–461 (2008)
Zhang, Y., Mandal, A., Koelbel, C., Cooper, K.: Combined fault tolerance and scheduling techniques for workflow applications on computational grids. In: Proc. of 9th IEEE Int. Symp. on Cluster Computing and the Grid, pp. 244–251 (2009)
Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In: Proc. of 1st IEEE/ACM Int. Symp. on Cluster Computing and the Grid, pp. 430–437 (2001)
Sinnen, O.: Task scheduling for parallel systems. John Wiley, Chichester (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jung, D., Chin, S., Chung, K., Suh, T., Yu, H., Gil, J. (2010). An Effective Job Replication Technique Based on Reliability and Performance in Mobile Grids. In: Bellavista, P., Chang, RS., Chao, HC., Lin, SF., Sloot, P.M.A. (eds) Advances in Grid and Pervasive Computing. GPC 2010. Lecture Notes in Computer Science, vol 6104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13067-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-13067-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13066-3
Online ISBN: 978-3-642-13067-0
eBook Packages: Computer ScienceComputer Science (R0)