Abstract
Patent searching is a complex retrieval task. An initial document search is only the starting point of a chain of searches and decisions that need to be made by patent searchers. Keyword-based retrieval is adequate for document searching, but it is not suitable for modelling comprehensive retrieval strategies. DB-like and logical approaches are the state-of-the-art techniques to model strategies, reasoning and decision making. In this paper we present the application of logical retrieval to patent searching. The two grand challenges are expressiveness and scalability, where high degree of expressiveness usually means a loss in scalability. In this paper we report how to maintain scalability while offering the expressiveness of logical retrieval required for solving patent search tasks. We present logical retrieval background, and how to model data-source selection and results’ fusion. Moreover, we demonstrate the modelling of a retrieval strategy, a technique by which patent professionals are able to express, store and exchange their strategies and rationales when searching patents or when making decisions. An overview of the architecture and technical details complement the paper, while the evaluation reports preliminary results on how query processing times can be guaranteed, and how quality is affected by trading off responsiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Callan, J.: Distributed information retrieval. In: Advances in Information Retrieval, pp. 127–150. Kluwer Academic Publishers, Dordrecht (2000)
Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: Fox, E., Ingwersen, P., Fidel, R. (eds.) Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 282–290. ACM, New York (1995)
Roelleke, T., Fuhr, N.: Information retrieval with probabilistic datalog. In: Crestani, F., Lalmas, M., Rijsbergen, C.J. (eds.) Uncertainty and Logics - Advanced models for the representation and retrieval of information. Kluwer Academic Publishers, Dordrecht (1998)
Roelleke, T., Wu, H., Wang, J., Azzam, H.: Modelling retrieval models in a probabilistic relational algebra with a new operator: The relational Bayes. VLDB Journal 17(1), 5–37 (2008)
Wu, H., Kazai, G., Roelleke, T.: Modelling anchor text retrieval in book search based on back-of-book index. In: SIRIG Workshop on Focused Retrieval, pp. 51–58 (2008)
Fuhr, N.: Optimum database selection in networked ir. In: Callan, J., Fuhr, N. (eds.) NIR 1996. Proceedings of the SIGIR 1996 Workshop on Networked Information Retrieval (1996), http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-7/
EPO: Annual Report 2008. European Patent Office (2008)
Si, L., Jin, R., Callan, J., Ogilvie, P.: A language modeling framework for resource selection and results merging. In: CIKM 2002 (2002)
Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)
Fuhr, N.: A decision-theoretic approach to database selection in networked ir. ACM Transactions on Information Systems 17(3), 229–249 (1999)
Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference networks. In: SIGIR 1995: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 21–28. ACM, New York (1995)
Craswell, N., Bailey, P., Hawking, D.: Server selection on the world wide web. In: DL 2000: Proceedings of the fifth ACM conference on Digital libraries, pp. 37–46. ACM, New York (2000)
Hawking, D., Thomas, P.: Server selection methods in hybrid portal search. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 75–82. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klampanos, I.A., Wu, H., Roelleke, T., Azzam, H. (2010). Logic-Based Retrieval: Technology for Content-Oriented and Analytical Querying of Patent Data. In: Cunningham, H., Hanbury, A., RĂĽger, S. (eds) Advances in Multidisciplinary Retrieval. IRFC 2010. Lecture Notes in Computer Science, vol 6107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13084-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-13084-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13083-0
Online ISBN: 978-3-642-13084-7
eBook Packages: Computer ScienceComputer Science (R0)