Skip to main content

Complexity of the Satisfiability Problem for a Class of Propositional Schemata

  • Conference paper
Language and Automata Theory and Applications (LATA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6031))

Abstract

Iterated schemata allow to define infinite languages of propositional formulae through formulae patterns. Formally, schemata extend propositional logic with new (generalized) connectives like e.g. \(\bigwedge^{n}_{i=1}\) and \(\bigvee^{n}_{i=1}\) where n is a parameter. With these connectives the new logic includes formulae such as \(\bigwedge^{n}_{i=1} {(P_i \Rightarrow P_{i+1})}\) (atoms are of the form P 1, P i + 5, P n , ...). The satisfiability problem for such a schema S is: “Are all the formulae denoted by S valid (or satisfiable)?” which is undecidable [2]. In this paper we focus on a specific class of schemata for which this problem is decidable: regular schemata. We define an automata-based procedure, called schaut, solving the satisfiability problem for such schemata. schaut has many advantages over procedures in [2,1]: it is more intuitive, more concise, it allows to make use of classical results on finite automata and it is tuned for an efficient treatment of regular schemata. We show that the satisfiability problem for regular schemata is in 2-EXPTIME and that this bound is tight for our decision procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aravantinos, V., Caferra, R., Peltier, N.: A DPLL Proof Procedure For Propositional Iterated Schemata. In: Proceedings of the 21st European Summer School in Logic, Language and Information (Worskhop Structures and Deduction) (2009)

    Google Scholar 

  2. Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus For Propositional Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 32–46. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Baelde, D.: On the Proof Theory of Regular Fixed Points. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 93–107. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bradfield, J., Stirling, C.: Modal Mu-Calculi. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, vol. 3, pp. 721–756. Elsevier Science Inc., New York (2007)

    Chapter  Google Scholar 

  5. Brotherston, J.: Cyclic Proofs for First-Order Logic with Inductive Definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bundy, A.: The Automation of Proof by Mathematical Induction. In: [14], pp. 845–911

    Google Scholar 

  7. Cleaveland, R.: Tableau-based Model Checking in the Propositional Mu-calculus. Acta Inf. 27(9), 725–747 (1990)

    MATH  MathSciNet  Google Scholar 

  8. Comon, H.: Inductionless induction. In: [14], ch. 14

    Google Scholar 

  9. Fisher, M., Rabin, M.: Super Exponential Complexity of presburger’s Arithmetic. SIAM-AMS Proceedings 7, 27–41 (1974)

    Google Scholar 

  10. Goré, R.: Tableau Methods for Modal and Temporal Logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, ch. 6, pp. 297–396. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  11. Hetzl, S., Leitsch, A., Weller, D., Paleo, B.W.: Proof Analysis with HLK, CERES and ProofTool: Current Status and Future Directions. In: Sutcliffe, G., Colton, S., Schulz, S. (eds.) Workshop on Empirically Successful Automated Reasoning for Mathematics (ESARM), July 2008, pp. 21–41 (2008)

    Google Scholar 

  12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Pu. Co., Reading (1979)

    MATH  Google Scholar 

  13. Immerman, N.: Relational Queries Computable in Polynomial Time (Extended Abstract). In: STOC ’82: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 147–152. ACM, New York (1982)

    Chapter  Google Scholar 

  14. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2. Elsevier/MIT Press (2001)

    Google Scholar 

  15. Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular and Tree-shaped Proofs in the mu-Calculus. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 425–440. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aravantinos, V., Caferra, R., Peltier, N. (2010). Complexity of the Satisfiability Problem for a Class of Propositional Schemata. In: Dediu, AH., Fernau, H., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2010. Lecture Notes in Computer Science, vol 6031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13089-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13089-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13088-5

  • Online ISBN: 978-3-642-13089-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics