Skip to main content

Combining Semantic Relations and DNA Microarray Data for Novel Hypotheses Generation

  • Conference paper
Linking Literature, Information, and Knowledge for Biology

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6004))

Abstract

Although microarray experiments have great potential to support progress in biomedical research, results are not easy to interpret. Information about the functions and relations of relevant genes needs to be extracted from the vast biomedical literature. A potential solution is to use computerized text analysis methods. Our proposal enhances these methods with semantic relations. We describe an application that integrates such relations with microarray results and discuss its benefits in supporting enhanced access to the relevant literature for interpretation of results and novel hypotheses generation. The application is available at http://sembt.mf.uni-lj.si

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cordero, F., Botta, M., Calogero, R.A.: Microarray data analysis and mining approaches. Brief Funct. Genomic Proteomic 6, 265–281 (2007)

    Article  Google Scholar 

  2. Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J. Biomed. Inform. 36, 462–477 (2003)

    Article  Google Scholar 

  3. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Edgar, R.: NCBI GEO: Mining tens of millions of expression profiles - database and tools update. Nucleic Acids Res. 35 (Database issue), D760–D765 (2007)

    Article  Google Scholar 

  4. Shatkay, H., Edwards, S., Wilbur, W.J., Boguski, M.: Genes, themes and microarrays: using information retrieval for large-scale gene analysis. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 317–328 (2000)

    Google Scholar 

  5. Blaschke, C., Oliveros, J.C., Valencia, A.: Mining functional information associated with expression arrays. Funct. Integr. Genomics 1, 256–268 (2001)

    Article  Google Scholar 

  6. Yang, J., Cohen, A.M., Hersh, W.: Automatic summarization of mouse gene information by clustering and sentence extraction from MEDLINE abstracts. In: AMIA Annu. Symp. Proc., pp. 831–835 (2007)

    Google Scholar 

  7. Leach, S.M., Tipney, H., Feng, W., Baumgartner, W.A., Kasliwal, P., Schuyler, R.P., Williams, T., Spritz, R.A., Hunter, L.: Biomedical discovery acceleration, with applications to craniofacial development. PLoS Comput. Biol. 3, e1000215 (2009)

    Article  Google Scholar 

  8. Jelier, R., ’t Hoen, P.A., Sterrenburg, E., den Dunnen, J.T., van Ommen, G.J., Kors, J.A., Mons, B.: Literature-aided meta-analysis of microarray data: a compendium study on muscle development and disease. BMC Bioinformatics 9, 291 (2008)

    Article  Google Scholar 

  9. Burkart, M.F., Wren, J.D., Herschkowitz, J.I., Perou, C.M., Garner, H.R.: Clustering microarray-derived gene lists through implicit literature relationships. Bioinformatics 23, 1995–2003 (2007)

    Article  Google Scholar 

  10. Swanson, D.R.: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect Biol. Med. 30, 7–18 (1986)

    Google Scholar 

  11. Hristovski, D., Peterlin, B., Mitchell, J.A., Humphrey, S.M.: Using literature-based discovery to identify disease candidate genes. Int. J. Med. Inform. 74, 289–298 (2005)

    Article  Google Scholar 

  12. Hristovski, D., Friedman, C., Rindflesch, T.C., Peterlin, B.: Exploiting semantic relations for literature-based discovery. In: AMIA Annu. Symp. Proc., pp. 349–353 (2006)

    Google Scholar 

  13. Ahlers, C.B., Hristovski, D., Kilicoglu, H., Rindflesch, T.C.: Using the literature-based discovery paradigm to investigate drug mechanisms. In: AMIA Annu. Symp. Proc., pp. 6–10 (2007)

    Google Scholar 

  14. Masseroli, M., Kilicoglu, H., Lang, F.M., Rindflesch, T.C.: Argument-predicate distance as a filter for enhancing precision in extracting predications on the genetic etiology of disease. BMC Bioinformatics 7, 291 (2006)

    Article  Google Scholar 

  15. Ahlers, C.B., Fiszman, M., Demner-Fushman, D., Lang, F.M., Rindflesch, T.C.: Extracting semantic predications from Medline citations for pharmacogenomics. In: Pac. Symp. Biocomput., pp. 209–220 (2007)

    Google Scholar 

  16. Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. In: Proc. AMIA Symp., pp. 17–21 (2001)

    Google Scholar 

  17. Tanabe, L., Wilbur, W.J.: Tagging gene and protein names in biomedical text. Bioinformatics 18, 1124–1132 (2002)

    Article  Google Scholar 

  18. R Development Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2008)

    Google Scholar 

  19. Gentleman, R.C., et al.: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)

    Article  Google Scholar 

  20. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy Stat. Soc. B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Moran, L.B., Duke, D.C., Deprez, M., Dexter, D.T., Pearce, R.K., Graeber, M.B.: Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7, 1–11 (2006)

    Article  Google Scholar 

  22. White, L.R., Toft, M., Kvam, S.N., Farrer, M.J., Aasly, J.O.: MAPK-pathway activity, Lrrk2 G2019S, and Parkinson’s disease. J. Neurosci. Res. 85, 1288–1294 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hristovski, D., Kastrin, A., Peterlin, B., Rindflesch, T.C. (2010). Combining Semantic Relations and DNA Microarray Data for Novel Hypotheses Generation. In: Blaschke, C., Shatkay, H. (eds) Linking Literature, Information, and Knowledge for Biology. Lecture Notes in Computer Science(), vol 6004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13131-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13131-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13130-1

  • Online ISBN: 978-3-642-13131-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics