Skip to main content

A Novel Algorithm for Faults Acquiring and Locating on Fiber Optic Cable Line

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6082))

  • 705 Accesses

Abstract

Fiber optic communication transmission network is the basis for communication networks, responsible for a large number of long-distance transmissions of voice, data, images, and other business. Man-made construction, natural disasters and other unexpected events are important factors in fiber optic cable line blocking. Occasional and sudden onset also leads to the unpredictability of fiber optic cable line blocking. This paper proposes an algorithm for faults acquiring and locating on fiber optic cable line, which can effectively reduce search time and processing time of fault point, and establishes a fault point database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y.: OTDR Accurate Use of Optical Cable lines to Find Obstacles Points. Telecom Engineering Technics and Standardization 21(5), 72–74 (2008)

    Google Scholar 

  2. Lu, G.: Analysis on the Methods for Acquiring and locating the Faults on the Fiber Optic Cable Line. SCI-TECH Information Development & Economy 19(14), 193–194 (2009)

    Google Scholar 

  3. Bai, L.: Accurately Positioning of Optical Cable Circuit Obstacle. Journal of Hebei Energy Institute of Vocation and Technology 7(1), 78–79 (2007)

    Google Scholar 

  4. Tateda, M., Horiguchi, T.: Water penetration sensing using wavelength tunable OTDR. IEEE Photon. Technol. Lett. 3(1), 1–3 (1991)

    Article  Google Scholar 

  5. Tani, Y., Sasaki, H., Kubota, Y., Watanabe, K.: Accuracy evaluation of a hetero-core splice fiber optic sensor. In: Proc. of SPIE, vol. 5952, pp. 59520L-1–59520L-8 (2005)

    Google Scholar 

  6. Cibula, E., Donlagic, D.: In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR. Optics Express 15(14), 8719–8730 (2007)

    Article  Google Scholar 

  7. Han, J.: Fault Positon of Railway Optical Cable Line. Railway Signalling & Communication 43(10), 62–63 (2007)

    Google Scholar 

  8. Hao, G.: Using OTDR to Measure the Fault Point of Cabled Yarn. Telecom Engineering Technics and Standardization (7), 60–62 (2003)

    Google Scholar 

  9. Guo, Z.: Accurate location of fiber cable troubles by using Optical Time Domain Refiectormeter and error analysis. Ningxia Engineering Technology 2(3), 274–276 (2003)

    Google Scholar 

  10. Hao, G.: Fault Location of Fiber Optic Link Using OTDR. Optical Fiber & Electric Cable and Their Applications (6), 36–38 (2004)

    Google Scholar 

  11. Duan, J., Liu, Q., Zhu, Y., Zhang, J.: A new way for fault location in fiber optic cable maintenance. Optical Fiber & Electric Cable and Their Applications (5), 40–43 (2000)

    Google Scholar 

  12. Zhong, Z., Wen, K., Wang, R.: Event Detection and Location in OTDR Data. Journal of PLA University of Science and Technology (Natural Science Edition) 5(5), 22–25 (2004)

    Google Scholar 

  13. Mei, L., Hu, S.: Maintenance of Long-distance Optical Fibal Cable. Tianjin Communications Technology (1), 48–51 (2002)

    Google Scholar 

  14. Zhao, Z., Huang, D., Mao, Q.: Optical Communication Engineering [M]. People’s Posts & Telecom Press, Beijing (1998)

    Google Scholar 

  15. Yang, X.: Optical fiber communication systems [M]. National Defense Industry Press, Beijing (2000)

    Google Scholar 

  16. Su, H., Wu, L., Lu, Z., Wang, J.: The Application of GIS in Telecommunication and Research in Demand. Telecom. Science 18(2), 28–31 (2002)

    Google Scholar 

  17. Chen, W., Lu, J.: Application of GIS to Dynamic Resource Management of Local Telecommunication Network. Jour. of Geodesy and Geodynamis 27, 147–149 (2007)

    Google Scholar 

  18. Li, N., Guo, M.: The Application of GIS in the Optical Cable Fault Location. Laser Journal 26(4), 73–74 (2005)

    MathSciNet  Google Scholar 

  19. Hou, G., Wang, J., Liu, J.: A Communication Network Management Information System Developed by Merging MIS and Geographic Information System. Transactions of Beijing Institute of Technology 24(4), 338–341 (2004)

    Google Scholar 

  20. Liu, X., Li, X., He, Y.: A Review of Application of GIS in Communications. Journal of Shanghai University(Natu. Scie. Edit.) 13(4), 389–393 (2007)

    Google Scholar 

  21. Wang, C., Yang, H.: Technical Research on Faults Location of Optical Cable. Electro-Optic Technology Application 20(2), 26–28 (2005)

    Google Scholar 

  22. Kong, F., Ju, T.: The Implementation of Telecom. Circuitry Management Based on GIS. Journal of Nanjing Univ. of Posts and Telecom. 21(2), 12–16 (2001)

    Google Scholar 

  23. Chai, Y., Tang, Y., Li, N., Dai, W.: Fault Check & Safeguard System of Optical Cable for Communication based on GIS. Journal of Chongqing University 27(8), 65–68 (2004)

    Google Scholar 

  24. Guo, M., Li, N., Li, S., Chai, Y.: Intelligent Diagnosis Method of Optical Cable Based on GIS and OTDR. Journal of Chongqing University(Natural Science Edition) 28(7), 78–81 (2005)

    Google Scholar 

  25. Bai, X., Liu, S.: Design of Automatic Monitoring Optical Cable System. Telecommunications for Electric Power System 30(5), 20–23 (2009)

    Google Scholar 

  26. Xiong, N., Vasilakos, A.V., Yang, L.T., Yi, P., Wang, C.-X., Vandenberg, A.: Art Vandenberg. Distributed Explicit Rate Schemes in Multi-input Multi-output Network Systems (appear to IEEE T-SMC part C)

    Google Scholar 

  27. Xiong, N., Jia, X., Yang, L.T., Vasilakos, A.V., Pan, Y., Li, Y.: A Distributed Efficient Flow Control Scheme for Multi-rate Multicast Networks. IEEE Transactions on Parallel and Distributed Systems (TPDS), TPDS-2008-10-0421

    Google Scholar 

  28. Xiong, N., Vasilakos, A.V., Yang, L.T., Song, L., Yi, P., Kannan, R., Li, Y.: Comparative Analysis of Quality of Service and Memory Usage for Adaptive Failure Detectors in Healthcare Systems. IEEE Journal on Selected Areas in Communications (JSAC), IEEE JSAC 27(4), 495–509 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, N., Chen, Y., Xiong, N., Yang, L.T., Liu, D., Zhang, Y. (2010). A Novel Algorithm for Faults Acquiring and Locating on Fiber Optic Cable Line. In: Hsu, CH., Yang, L.T., Park, J.H., Yeo, SS. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2010. Lecture Notes in Computer Science, vol 6082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13136-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13136-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13135-6

  • Online ISBN: 978-3-642-13136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics