Abstract
This paper examines the use of artificial intelligence (in particular the aplication of Gene Expression Programming, GEP) to demand forecasting. In the world of production management, many data that are produced in function of the of economic activity characteristics in which they belong, may suffer, for example, significant impacts of seasonal behaviors, making the prediction of future conditions difficult by means of methods commonly used. The GEP is an evolution of Genetic Programming,which is part of the Genetic Algorithms. GEP seeks for mathematical functions, adjusting to a given set of solutions using a type of genetic heuristics from a population of random functions. In order to compare the GEP, we have used the others quantitatives method. Thus, from a data set of about demand of consumption of twelve products line metal fittings, we have compared the forecast data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, J.R.T.: AdministracĂŁo de materiais, Atlas, SĂŁo Paulo (1999)
Bertaglia, P.R.: LogĂstica e gerenciamento da cadeia de abastecimento, Saraiva, SĂŁo Paulo (2003)
Dejong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD Dissertation. Dept. of Computer and Communication Sciences, Univ. de Michigan, Ann Arbor (1975)
Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13, 87â129 (2001)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithm. John Wiley & Sons, New York (1998)
Taylor, D.A.: LogĂstica na cadeia de suprimentos. Pearson/Addison-Wesley, SĂŁo Paulo (2005)
Tubino, D.F.: Planejamento e controle da producĂŁo - teoria e prĂĄtica, Atlas, SĂŁo Paulo (2007)
Vollman, T.E., Berry, W.L., Whybark, D.C., Jacobs, R.F.: Sistemas de planejamento e controle da producao para o gerenciamento da cadeia de suprimentos. Bookman, Porto Alegre (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bittencourt, E., Schossland, S., Landmann, R., de Aguiar, D.M., De Oliveira, A.G. (2010). The Gene Expression Programming Applied to Demand Forecast. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds) Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop (SOCO 2010). Advances in Intelligent and Soft Computing, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13161-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-13161-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13160-8
Online ISBN: 978-3-642-13161-5
eBook Packages: EngineeringEngineering (R0)