Skip to main content

Abstract

This paper examines the use of artificial intelligence (in particular the aplication of Gene Expression Programming, GEP) to demand forecasting. In the world of production management, many data that are produced in function of the of economic activity characteristics in which they belong, may suffer, for example, significant impacts of seasonal behaviors, making the prediction of future conditions difficult by means of methods commonly used. The GEP is an evolution of Genetic Programming,which is part of the Genetic Algorithms. GEP seeks for mathematical functions, adjusting to a given set of solutions using a type of genetic heuristics from a population of random functions. In order to compare the GEP, we have used the others quantitatives method. Thus, from a data set of about demand of consumption of twelve products line metal fittings, we have compared the forecast data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, J.R.T.: AdministracĂŁo de materiais, Atlas, SĂŁo Paulo (1999)

    Google Scholar 

  2. Bertaglia, P.R.: LogĂ­stica e gerenciamento da cadeia de abastecimento, Saraiva, SĂŁo Paulo (2003)

    Google Scholar 

  3. Dejong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD Dissertation. Dept. of Computer and Communication Sciences, Univ. de Michigan, Ann Arbor (1975)

    Google Scholar 

  4. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13, 87–129 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithm. John Wiley & Sons, New York (1998)

    Google Scholar 

  6. Taylor, D.A.: LogĂ­stica na cadeia de suprimentos. Pearson/Addison-Wesley, SĂŁo Paulo (2005)

    Google Scholar 

  7. Tubino, D.F.: Planejamento e controle da producĂŁo - teoria e prĂĄtica, Atlas, SĂŁo Paulo (2007)

    Google Scholar 

  8. Vollman, T.E., Berry, W.L., Whybark, D.C., Jacobs, R.F.: Sistemas de planejamento e controle da producao para o gerenciamento da cadeia de suprimentos. Bookman, Porto Alegre (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bittencourt, E., Schossland, S., Landmann, R., de Aguiar, D.M., De Oliveira, A.G. (2010). The Gene Expression Programming Applied to Demand Forecast. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds) Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop (SOCO 2010). Advances in Intelligent and Soft Computing, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13161-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13161-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13160-8

  • Online ISBN: 978-3-642-13161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics