Skip to main content

Quotient Complexity of Closed Languages

  • Conference paper
Computer Science – Theory and Applications (CSR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6072))

Included in the following conference series:

Abstract

A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by subword we mean subsequence. We study the quotient complexity (usually called state complexity) of operations on prefix-, suffix-, factor-, and subword-closed languages. We find tight upper bounds on the complexity of the subword-closure of arbitrary languages, and on the complexity of boolean operations, concatenation, star, and reversal in each of the four classes of closed languages. We show that repeated application of positive closure and complement to a closed language results in at most four distinct languages, while Kleene closure and complement gives at most eight.

This work was supported by the Natural Sciences and Engineering Research Council of Canada grant OGP0000871 and by VEGA grant 2/0111/09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet 19, 445–464 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Avgustinovich, S.V., Frid, A.E.: A unique decomposition theorem for factorial languages. Internat. J. Algebra Comput. 15, 149–160 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bassino, F., Giambruno, L., Nicaud, C.: Complexity of operations on cofinite languages. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 222–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzozowski, J.: Quotient complexity of regular languages. In: Dassow, J., Pighizzini, G., Truthe, B. (eds.) 11th International Workshop on Descriptional Complexity of Formal Systems, DCFS 2009, pp. 25–42. Otto-von-Guericke-Universität, Magdeburg (2009), http://arxiv.org/abs/0907.4547

    Google Scholar 

  6. Brzozowski, J., Grant, E., Shallit, J.: Closures in formal languages and Kuratowski’s theorem. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 125–144. Springer, Heidelberg (2009)

    Google Scholar 

  7. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Heidelberg (2010) Full paper, http://arxiv.org/abs/0908.2083

    Chapter  Google Scholar 

  8. Brzozowski, J., Santean, N.: Predictable semiautomata. Theoret. Comput. Sci. 410, 3236–3249 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brzozowski, J., Shallit, J., Xu, Z.: Decision procedures for convex languages. In: Dediu, A., Ionescu, A., Martin-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 247–258. Springer, Heidelberg (2009)

    Google Scholar 

  10. Galil, Z., Simon, J.: A note on multiple-entry finite automata. J. Comput. System Sci. 12, 350–351 (1976)

    MATH  MathSciNet  Google Scholar 

  11. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1–19 (1974)

    MATH  MathSciNet  Google Scholar 

  12. Haines, L.H.: On free monoids partially ordered by embedding. J. Combin. Theory 6, 94–98 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–115. University of Szeged, Hungary (2009)

    Google Scholar 

  15. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Autom. Lang. Comb. 6, 453–466 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kao, J.-Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial, or both. Theoret. Comput. Sci. 410, 5010–5021 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuratowski, C.: Sur l’opération \(\overline{A}\) de l’analysis situs. Fund. Math. 3, 182–199 (1922)

    MATH  Google Scholar 

  19. de Luca, A., Varricchio, S.: Some combinatorial properties of factorial languages. In: Capocelli, R. (ed.) Sequences, pp. 258–266. Springer, Heidelberg (1990)

    Google Scholar 

  20. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (in Russian); English translation: Soviet Math. Dokl. 11, 1373–1375 (1970)

    Google Scholar 

  21. Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966) (in Russian); English translation: Cybernetics 2, 6–9 (1966)

    Google Scholar 

  22. Okhotin, A.: On the state complexity of scattered substrings and superstrings. Turku Centre for Computer Science Technical Report No. 849 (2007)

    Google Scholar 

  23. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Internat. J. Found. Comput. Sci. 13, 145–159 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoret. Comput. Sci. 320, 315–329 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481–492. North-Holland, Amsterdam (1973)

    Google Scholar 

  26. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J. Comput. System Sci. 18, 304–306 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yu., S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)

    MathSciNet  Google Scholar 

  28. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brzozowski, J., Jirásková, G., Zou, C. (2010). Quotient Complexity of Closed Languages. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13182-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13181-3

  • Online ISBN: 978-3-642-13182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics