
ar
X

iv
:0

91
2.

10
34

v1
 [

cs
.F

L
]

 5
 D

ec
 2

00
9

Quotient Complexity of Closed Languages ⋆

Janusz Brzozowski1, Galina Jirásková2, and Chenglong Zou1

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

{brzozo@,c2zou@student.math.}uwaterloo.ca
2 Mathematical Institute, Slovak Academy of Science,

Grešákova 6, 040 01 Košice, Slovakia
{jiraskov@saske.sk}

Abstract. A language L is prefix-closed if, whenever a word w is in L,
then every prefix of w is also in L. We define suffix-, factor-, and subword-
closed languages in the same way, where by subword we mean subse-
quence. We study the quotient complexity (usually called state com-
plexity) of operations on prefix-, suffix-, factor-, and subword-closed lan-
guages. We find tight upper bounds on the complexity of the prefix-,
suffix-, factor-, and subword-closure of arbitrary languages, and on the
complexity of boolean operations, concatenation, star and reversal in
each of the four classes of closed languages. We show that repeated ap-
plication of positive closure and complement to a closed language results
in at most four distinct languages, while Kleene closure and complement
gives at most eight languages.

Keywords: automaton, closed, factor, language, prefix, quotient, state
complexity, subword, suffix, regular operation, upper bound

1 Introduction

The state complexity of a regular language L is the number of states in the min-
imal deterministic finite automaton (dfa) recognizing L. The state complexity of
an operation f(K,L) (or g(L)) in a subclass C of regular languages is the max-
imal state complexity of the language f(K,L) (or g(L)), when K and L range
over all languages in C. For a detailed discussion of general issues of state com-
plexity see [4, 22] and the reference lists in those papers. In 1994 the complexity
of concatenation, star, left and right quotients, reversal, intersection and union
in regular languages were examined in detail in [23]. The complexity of opera-
tions was also considered in several subclasses of regular languages: finite [22],
unary [18, 23], prefix-free [13] and suffix-free [12], and ideal languages [6]. These
studies show that the complexity can be significantly lower in a subclass than
in the general case. Here we examine state complexity in the classes of prefix-,
suffix-, factor-, and subword-closed regular languages.

⋆ This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant OGP0000871 and by VEGA grant 2/0111/09.

http://arxiv.org/abs/0912.1034v1

There are several reasons for considering closed languages. They appear
often in theoretical computer science. Subword-closed languages were studied
in 1969 [11], and also in 1973 [20]. Suffix-closed languages were considered in
1974 [10], and later in [9, 14, 21]. Factor-closed languages, also called factorial,
have received some attention, for example, in [2, 16]. Subword-closed languages
were studied in [17]. Prefix-closed languages play a role in predictable semiau-
tomata [7]. All four classes of closed languages were examined in [1], and decision
problems for closed languages were studied in [8]. A language is a left ideal (re-
spectively, right, two-sided, all-sided ideal) if L = Σ∗L, (respectively, L = LΣ∗,
L = Σ∗LΣ∗ and L = Σ∗ L), where Σ∗ L is the shuffle of Σ∗ with L). Closed
languages are related to ideal languages as follows [1]: For every non-empty L, L
is a right (left, two-sided, all-sided) ideal, if and only if L is a prefix(suffix, factor,
subword)-closed language. Closed languages are defined by binary relations “is
a prefix of” (respectively, “is a suffix of”, “is a factor of”, “is a subword of”) [1],
and are special cases of convex languages [1, 20]. The fact that the four classes of
closed languages are related to each other permits us to obtain many complexity
results using similar methods.

2 Quotient Complexity

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ.
A word is any element of Σ∗, and ε is the empty word. The length of a word
w ∈ Σ∗ is |w|. A language over Σ is any subset of Σ∗. The cardinality of a set
is denoted by |S|.

If w = uxv for some u, v, x ∈ Σ∗, then u is a prefix of w, v is a suffix of
w, and x is a factor of w. If w = w0a1w1 · · ·anwn, where a1, . . . , an ∈ Σ, and
w0, . . . , wn ∈ Σ∗, then v = a1 · · ·an is a subword of w.

A language L is prefix-closed if w ∈ L implies that every prefix of w is also
in L. In the same way, we define suffix-, factor-, and subword-closed languages.
A language is closed if it is prefix-, suffix-, factor-, or subword-closed.

The following set operations are defined on languages: complement (L =
Σ∗ \L), union (K ∪L), intersection (K ∩L), difference (K \L), and symmetric
difference (K ⊕ L). A general boolean operation with two arguments is denoted
by K ◦L. We also define the product, usually called concatenation or catenation,
(KL = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}), (Kleene) star (K∗ =

⋃

i≥0 K
i), and

positive closure (K+ =
⋃

i≥1 K
i). The reverse wR of a word w ∈ Σ∗ is defined

as follows: εR = ε, and (wa)R = awR. The reverse of a language L is denoted
by LR and is defined as LR = {wR | w ∈ L}.

Regular languages over Σ are languages that can be obtained from the set of
basic languages {∅, {ε}} ∪ {{a} | a ∈ Σ}, using a finite number of operations of
union, product and star. Such languages are usually denoted by regular expres-
sions. If E is a regular expression, then L(E) is the language denoted by that
expression. For example, E = (ε∪a)∗b denotes L = L(E) = ({ε}∪{a})∗{b}. We
usually do not distinguish notationally between regular languages and regular
expressions; the meaning is clear from the context.

2

A deterministic finite automaton (dfa) is a tuple D = (Q,Σ, δ, q0, F), where
Q is a set of states, Σ is the alphabet, δ : Q×Σ → Q is the transition function, q0
is the initial state, and F is the set of final or accepting states. A nondeterministic
finite automaton (nfa) is a tuple N = (Q,Σ, η,Q0, F), where Q, Σ and F are
as in a dfa, η : Q ×Σ → 2Q is the transition function and Q0 ⊆ Q is the set of
initial states. If η also allows ε, i.e., η : Q× (Σ ∪{ε}) → 2Q, we call N an ε-nfa.

Our approach to quotient complexity follows closely that of [4]. Since state
complexity is a property of a language, it is more appropriately defined in
language-theoretic terms. The left quotient, or simply quotient, of a language
L by a word w is the language Lw = {x ∈ Σ∗ | wx ∈ L}. The quotient complex-
ity of L is the number of distinct quotients of L, and is denoted by κ(L).

Quotients of regular languages [3, 4] can be computed as follows: First, the
ε-function Lε of a regular language L is Lε = ∅ if ε 6∈ L and Lε = ε if ε ∈ L.
The quotient by a letter a ∈ Σ is computed by structural induction: ba = ∅ if
b ∈ {∅, ε} or b ∈ Σ and b 6= a, and ba = ε if b = a; (L)a = La; (K ∪ L)a =
Ka∪La; (KL)a = KaL∪KεLa; (K

∗)a = KaK
∗. The quotient by a word w ∈ Σ∗

is computed by induction on the length of w: Lε = L; Lw = La if w = a ∈ Σ;
Lwa = (Lw)a. A quotient Lw is accepting if ε ∈ Lw; otherwise it is rejecting.

The quotient automaton of a regular language L is D = (Q,Σ, δ, q0, F),
where Q = {Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, and F = {Lw |
(Lw)

ε = ε}. This is the minimal dfa accepting L; hence quotient complexity of
L is equal to the state complexity of L. However, there are some advantages to
using quotients [4]. If a language L has the empty quotient, we say that L has ∅.

To simplify the notation, we write (Lw)
ε as Lε

w. Whenever convenient, the
following formulas are used to establish upper bounds on quotient complexity:

Proposition 1 ([3, 4]). If K and L are regular languages, then

(L)w = Lw; (K ◦ L)w = Kw ◦ Lw. (1)

(KL)w = KwL ∪KεLw ∪





⋃

w=uv

u,v∈Σ+

Kε
uLv



 . (2)

(L∗)ε = ε ∪ LL∗, (L∗)w =



Lw ∪
⋃

w=uv

u,v∈Σ+

(L∗)εuLv



L∗ for w ∈ Σ+. (3)

3 Closure Operations

We now turn to the closure of languages under binary relations. All the relations
that we study in this paper are partial orders. Let E be a partial order on Σ∗; the
E-closure of a language L is the language EL = {x ∈ Σ∗ | x E w for some w ∈
L}. We use ≤, �, ⊑, ⋐ for the relations “is a prefix of”, “is a suffix of”, “is a
factor of”, “is a subword of”, respectively.

Suppose L is an arbitrary regular language of complexity n. If n = 1 then L =
∅ or L = Σ∗, and each closure is L. We show that the worst-case complexity for

3

prefix-closure is n, for suffix-closure it is 2n− 1, and for factor-closure it is 2n−1.
These bounds are tight for binary languages. Subword-closure of languages was
previously studied by Okhotin [17] under the name “scattered subwords”, but
tight upper bounds were not established. Our next theorem solves this problem.

Theorem 1 (Closure Operations). Let L be a regular language with κ(L) =
n ≥ 2. Let ≤L, �L, ⊑L, ⋐L be the prefix-closure, suffix-closure, factor-closure,
and subword-closure of L, respectively. Then
1. κ(≤L) ≤ n.
2. κ(�L) ≤ 2n − 1 if L does not have ∅, and κ(�L) ≤ 2n−1 otherwise.
3. κ(⊑L) ≤ 2n−1.
4. κ(⋐L) ≤ 2n−2 + 1.
The last bound is tight if |Σ| ≥ n− 2; the other bounds are tight if |Σ| ≥ 2.

Proof. 1. Given a language L recognized by dfa D, to get the dfa for its prefix-
closure ≤L, we need only make each non-empty state accepting. Hence κ(≤L) ≤
n. For tightness, consider the language L = {ai | i ≤ n − 2}. We have ≤L = L
and κ(≤L) = n.

2. Having a quotient automaton of a language L, we can construct an nfa
for its suffix-closure by making each non-empty state initial. The equivalent dfa
has at most 2n − 1 states if L does not have the empty quotient (the empty
set of states cannot be reached), and at most 2n−1 states otherwise. To prove
tightness, consider the language L defined by the quotient automaton shown in
Fig. 1. Construct an nfa for the suffix-closure of L, by making all states initial.
Let us show that the corresponding subset automaton has 2n − 1 reachable and
pairwise inequivalent states.

0 1 2 3 ...a a a a a

a

b b b b

b
n−1

Fig. 1. Quotient automaton of a language L which does not have ∅.

We prove reachability by induction on the size of subsets. The basis, |S| = n,
holds true since {0, 1, . . . , n− 1} is the initial state. Assume that each set of size
k is reachable, and let S be a set of size k − 1. If S contains state 0 but does
not contain state 1, then it can be reached from the set S ∪ {1} of size k by b. If
S contains both 0 and 1, then there is a state i such that i ∈ S and i + 1 /∈ S.
Then S can be reached from {s− i mod n | s ∈ S} by ai. The latter set contains
0 and does not contain 1, and so is reachable. If a non-empty S does not contain
0, then it can be reached from {s−minS | s ∈ S}, which contains 0, by aminS .

To prove inequivalence notice that the word an−i is accepted by the nfa only
from state i for all i = 0, 1, . . . , n−1. It turns out that all the states in the subset
automaton are pairwise inequivalent.

4

Now consider the case where a language has ∅. Let L be the language defined
by the quotient automaton shown in Fig. 2. We first remove state n− 1 and all
transitions going to this state, and then construct an nfa as above. The proof
of reachability of all non-empty subsets of {0, 1, . . . , n− 2} is the same as in the
previous case. The empty set can be reached from {0} by b. For inequivalence,
(ab)n is accepted only from 0, and an−1−i(ab)n only from i for i = 1, 2, . . . , n−2.

...a a a a a

a

b b b

b

b

a,b

n−1 0 1 2 3 n−2

Fig. 2. Quotient automaton of a language L which has ∅.

3. Suppose we have the quotient automaton of a language L. To find an nfa for
the factor closure ⊑L, we make all non-empty states of the quotient automaton
both accepting and initial and delete the empty state. Hence the bound is 2n−1.
The language L defined by quotient automaton shown in Fig. 2 meets the bound.

4. To get an ε-nfa for the subword-closure ⋐L from the quotient automaton
of L, we remove the empty state (if there is no empty state, then ⋐L = Σ∗), and
add an ε-transition from state p to state q whenever there is a transition from p
to q in the quotient automaton. Since the initial state can reach every non-empty
state through ε-transitions, no other subset containing the initial state can be
reached. Hence there are at most 2n−2 + 1 reachable subsets.

To prove tightness, if n = 2, let Σ = {a, b}; then L = a∗ meets the bound. If
n ≥ 3, let Σ = {a1, . . . , an−2}, and L =

⋃

ai∈Σ ai(Σ \ {ai})∗. Thus the language
L consists of all words over Σ, in which the first letter occurs exactly once.
Let K be the subword-closure of L. Then K = L ∪ {w ∈ Σ∗ | at least one
letter is missing in w}. For each boolean vector b = (b1, b2, . . . , bn−2), define the
word w(b) = w1w2 · · ·wn−2, in which wi = ε if bi = 0 and wi = ai if bi = 1.
Now consider the word ε, and each word a1w(b). Let us show that all quotients
of K by these 2n−2 + 1 words are distinct. For each binary vector b, we have
a1a2 · · · an−2 ∈ Kε \Ka1w(b). Let b and b′ be two different vectors with bi = 0
and b′i = 1. Then we have a1a2 · · · ai−1ai+1ai+2 · · · an−2 ∈ Ka1w(b) \ Ka1w(b′).
Thus all quotients are distinct, and so κ(K) ≥ 2n−2 + 1. ⊓⊔

4 Basic Operations on Closed Languages

Now we study the quotient complexity of operations on closed languages. For
regular languages, the following bounds are known [23]: mn for boolean opera-
tions, m2n − 2n−1 for product, 3/4.2n for star, and 2n for reversal. The bounds
for closed languages are smaller in most cases. We also show that the bounds
are tight, usually for a fixed alphabet. The bounds for boolean operations and
reversal follow from the results on ideal languages [6].

5

Theorem 2 (Boolean Operations). If K and L are prefix-closed (or factor-
closed or subword-closed) with κ(K) = m and κ(L) = n, then
1. κ(K ∩ L) ≤ mn− (m+ n− 2),
2. κ(K ∪ L), κ(K ⊕ L) ≤ mn,
3. κ(K \ L) ≤ mn− (n− 1),
For suffix-closed languages, κ(K ◦ L) ≤ mn. All bounds are tight if |Σ| ≥ 4.

Proof. Recall that the complement of a prefix-closed (respectively, suffix-, factor-,
or subword-closed) language is a right (respectively, left, two-sided, all-sided)
ideal. We get all the results using De Morgan’s laws and the results from [6]. ⊓⊔

Remark 1. If L is prefix-closed, then either L = Σ∗ or L has ∅ as a quotient.
Moreover, each quotient of L is either accepting or ∅.

Remark 2. For a suffix-closed language L, if v is a suffix of w then Lw ⊆ Lv. In
particular, Lw ⊆ Lε = L for each word w in Σ∗.

Theorem 3 (Product). Let K and L be closed languages with κ(K) = m and
κ(L) = n, and let k be the number of accepting quotients of K. If m = 1 or
n = 1, then κ(KL) = 1. Otherwise,
1. If K and L are prefix-closed, then κ(KL) ≤ (m+ 1) · 2n−2.
2. If K and L are suffix-closed, then κ(KL) ≤ (m− k)n+ k.
3. If K and L are both factor- or both subword-closed, then κ(KL) ≤ m+n− 1.
All bounds are tight if |Σ| ≥ 3.

Proof. If m = 1, then K = ∅ or K = Σ∗, and so KL = ∅ or, since ε ∈ L,
KL = Σ∗. Thus κ(KL) = 1. The case of n = 1 is similar. Now let m,n ≥ 2.

1. If K and L are prefix-closed, then ε ∈ K, and, by Remark 1, both lan-
guages have ∅ as a quotient. The quotient (KL)w is given by Equation (2). If Kw

is accepting, then L is always in the union, and there are 2n−2 non-empty subsets
of non-empty quotients of L that can be added. Since there are m− 1 accepting
quotients of K, there are (m − 1)2n−2 such quotients of KL. If Kw is reject-
ing, then 2n−1 subsets of non-empty quotients of L can be added. Altogether,
κ(KL) ≤ 2n−1 + (m− 1)2n−2 = (m+ 1)2n−2.

For tightness, consider prefix-closed languages K and L defined by the quo-
tient automata of Fig. 3 (if n = 2, then L = {a, c}∗). Construct an ε-nfa for
the language KL from these quotient automata by adding an ε-transition from
states q0, q1, . . . , qm−2 to state 0. The initial state of the nfa is q0, and the accept-
ing states are 0, 1, . . . , n− 2. Let us show that there are (m+1) · 2n−2 reachable
and pairwise inequivalent states in the corresponding subset automaton.

State {q0, 0} is the initial state, and each state {q0, 0, i1, i2, . . . , ik}, where
1 ≤ i1 < i2 < · · · < ik ≤ n−2, can be reached from state {q0, 0, i2−i1, . . . , ik−i1}
by word abi1−1. For each subset S of {0, 1, . . . , n − 2} containing state 0, each
state {qi} ∪ S with 1 ≤ i ≤ m− 1 can be reached from state {q0} ∪ S by ci. If a
non-empty set S does not contain state 0, then state {qm−1}∪S can be reached
from state {qm−1}∪{s−minS | s ∈ S}, which contains state 0, by aminS . State
{qm−1, n− 1} can be reached from state {qm−1, n− 2} by b.

6

q
1

q2 qm−1qm−2
c c c

a,b a,b,c

a,b,c

...a a,b a,b a,b

a

b

b,c c c c

c c

a,b a,b a,b

q0

210 n−2 n−1

...

Fig. 3. Quotient automata of prefix-closed languages K and L.

To prove inequivalence, notice that the word bn is accepted by the quotient
automaton for L only from state 0, and the word an−1−ibn only from state i
(1 ≤ i ≤ n−2). It turns out that two different states {qm−1}∪S and {qm−1}∪T
are inequivalent. It follows that states {qi} ∪ S and {qi} ∪ T are inequivalent as
well. States {qi}∪S and {qj}∪T with i < j can be distinguished by cm−1−jbnabn.
Hence the subset automaton has (m+ 1) · 2n−2 reachable and pairwise inequiv-
alent states, and so κ(KL) = (m+ 1)2n−2.

2. If K and L are suffix-closed, then, by Remark 2, for each word w we have

(KL)w = KwL ∪KεLw ∪ (
⋃

w=uv

u,v∈Σ+

Kε
uLv) = KwL ∪ Lx,

for some suffix x of w. If Kw is a rejecting quotient, there are at most (m− k)n
such quotients. If Kw is accepting, then ε ∈ Kw, and since Lx ⊆ Lε = L ⊆ KwL,
we have (KL)w = KwL. There are at most k such quotients. Therefore there
are at most (m− k)n+ k quotients in total.

To prove tightness, let K and L be ternary suffix-closed languages defined by
quotient automata shown in Fig. 4. Consider the words ε = a0b0, and aibj with

...

a a a a a

a,b,c

a,b,c

b b bb,c

c c c

b b b b b

a,c a a a

c c c

...0 1

0 1 2

2 m−1m−2

n−2 n−1

Fig. 4. Quotient automata of suffix-closed languages K and L.

7

1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. Let us show that all quotients of KL by these
words are distinct. Let (i, j) 6= (k, ℓ), and let x = aibj and y = akbℓ. If i < k, take
z = am−1−kbnc. Then xz is in KL, while yz is not, and so z ∈ (KL)x \ (KL)y.
If i = k and j < ℓ, take z = ambn−1−ℓc. We again have z ∈ (KL)x \ (KL)y.
Thus the language KL has at least (m − 1)n + 1 distinct quotients, and so
κ(KL) = (m− 1)n+ 1.

Notice that, if the quotients Kai with 0 ≤ i ≤ k − 1 are accepting, then the
resulting product has quotient complexity (m− k)n+ k.

3. It suffices to derive the bound for factor-closed languages, since every
subword-closed language is also factor-closed. Since factor-closed languages are
suffix-closed, κ(KL) ≤ (m− k)n+ k. The language K has at most one rejecting
quotient, because it is prefix-closed. Thus, k = m− 1 and κ(KL) ≤ m+ n− 1.

For tightness, consider binary subword-closed languages K = {w ∈ {a, b}∗ |
am−1 is not a subword of w} and L = {w ∈ {a, b}∗ | bn−1 is not a subword of
w} with κ(K) = m and κ(L) = n. Consider the word w = am−1bn−1. This word
is not in the product KL. However, removing any non-empty subword from w
results in a word in KL. Therefore, κ(KL) ≥ m+ n− 1. ⊓⊔

Theorem 4 (Star). Let L be a closed language with κ(L) = n ≥ 2.
1. If L is prefix-closed, then κ(L∗) ≤ 2n−2 + 1.
2. If L is suffix-closed, then κ(L∗) ≤ n if L = L∗ and κ(L∗) ≤ n− 1 if L 6= L∗.
3. If L is factor- or subword-closed, then κ(L∗) ≤ 2.
If κ(L) = 1, then κ(L∗) ≤ 2. All bounds are tight if |Σ| ≥ 2.

Proof. 1. For every non-empty word w, the quotient (L∗)w is given by Equa-
tion (3). If L is prefix-closed, then so is L∗ and (L∗)w. Thus, if (L

∗)w is non-
empty, then it must contain the empty word. Hence (L∗)w ⊇ L∗ ⊇ LL∗ ⊇ L.
Since the empty quotient of L and L itself are always contained in every non-
empty quotient of L∗, there are at most 2n−2 non-empty quotients of L∗. Since
there is at most one empty quotient, there are at most 2n−2 + 1 quotients in
total. The quotient (L∗)ε has already been counted, since L is closed and ε ∈ L
implies (L∗)ε = LL∗, which has the form of Equation (3).

If n = 1 and n = 2, the bound 2 is met by L = ∅ and L = ε, respectively.
Now let n ≥ 3 and let L be the prefix-closed language defined by the quotient
automaton shown in Fig. 5; transitions not depicted in the figure go to state n−1.
Construct an ε-nfa for L∗ by removing state n − 1 and adding an ε-transition

...a,b a,b a,b ba
b

c

a,b,c

n−2 n−1210

Fig. 5. Quotient automaton of prefix-closed language L.
;

8

from all the remaining states to the initial state. Let us show that 2n−2+1 states
are reachable and pairwise inequivalent in the corresponding subset automaton.

We first prove that each subset of {0, 1, . . . , n − 2} containing state 0 is
reachable. The proof is by induction on the size of the subsets. The basis, |S| = 1,
holds true since {0} is the initial state of the subset automaton. Assume that
each set of size k containing state 0 is reachable, and let S = {0, i1, i2, . . . , ik},
where 0 < i1 < i2 < · · · < ik ≤ n − 2, be a set of size k + 1. Then S can be
reached from the set {0, i2 − i1, . . . , ik − i1} of size k by abi1−1. Since the latter
set is reachable by the induction hypothesis, the set S is reachable as well. The
empty set can be reached from {0} by b, and we have 2n−2 +1 reachable states.

To prove inequivalence of these states notice that the word bn−3 is accepted
by the nfa only from state 1, and each word bn−2−icbn−3 (2 ≤ i ≤ n− 2), only
from state i. It follows that all the states in the subset automaton are pairwise
inequivalent.

2. For a non-empty suffix-closed language L, the quotient (L∗)ε is LL
∗, which

is of the same form as the quotients by a non-empty word w given by Equa-
tion (3), (L∗)w = (Lw ∪ Lv1 ∪ · · · ∪ Lvk)L

∗, where the vi are suffixes of w, and
vk is the shortest. By Remark 2, if v is a suffix of w, then Lw ⊆ Lv. Thus the
quotient becomes (L∗)w = LvkL

∗. There are at most n such quotients.
If L 6= L∗ for a non-empty suffix-closed language L, then there must be two

words x, y in L such that xy /∈ L. Hence y ∈ Lε \Lx, and so Lε 6= Lx. However,
since ε ∈ Lx and L∗ is suffix-closed, we have (L∗)ε = L∗ ⊆ LxL

∗ ⊆ (L∗)x ⊆
(L∗)ε, and so (L∗)ε = (L∗)x. It turns out that κ(L

∗) ≤ n− 1.
For n = 1, L = ∅ and for n = 2, L = ε meet the bound 2. Let n ≥ 3. If L =

(a∪ ban−2)∗, then L is suffix-closed, κ(L) = n, and L∗ = L. If L = ε∪
⋃n−3

i=0 aib,

then L is suffix-closed, κ(L) = n, L∗ = (
⋃n−3

i=0 aib)∗, and κ(L∗) = n− 1.
3. If each letter in Σ appears in some word of a factor-closed language L,

then L∗ = Σ∗ and κ(L∗) = 1. Otherwise, κ(L∗) = 2. The bound is met by
subword-closed language L = {w ∈ {a, b}∗ | w = ai and 0 ≤ i ≤ n− 2}. ⊓⊔

Since the operation of reversal commutes with complementation, we have the
following results on ideal languages from [6]:

Theorem 5 (Reversal). Let L be a closed language with κ(L) = n ≥ 2.
1. If L is prefix-closed, then κ(LR) ≤ 2n−1. The bound is tight if |Σ| ≥ 2.
2. If L is suffix-closed, then κ(LR) ≤ 2n−1 + 1. The bound is tight if |Σ| ≥ 3.
3. If L is factor-closed, then κ(LR) ≤ 2n−2 + 1. The bound is tight if |Σ| ≥ 3.
4. If L is subword-closed, then κ(LR) ≤ 2n−2+1. The bound is tight if |Σ| ≥ 2n.
If κ(L) = 1, then κ(LR) = 1. ⊓⊔

Unary Languages: Unary closed languages have special properties because
the product of unary languages is commutative. The classes of prefix-closed,
suffix-closed, factor-closed, and subword-closed unary languages all coincide. If
a unary closed language L is finite, then either it is empty and has κ(L) = 1,
or has the form {ai | i ≤ n − 2}, for some n ≥ 2, and has κ(L) = n. If L is
infinite, then L = a∗, and κ(L) = 1. The bounds for unary languages are given
in Tables 1 and 2 on page 11.

9

5 Kuratowski Algebras Generated by Closed Regular

Languages

A theorem of Kuratowski [15] states that, given a topological space, at most 14
distinct sets can be produced by repeatedly applying the operations of closure
and complement to a given set. A closure operation on a set S is an operation
� : 2S → 2S satisfying the following conditions for any subsets X,Y of S:
(1) X ⊆ X�, (2) X ⊆ Y implies X� ⊆ Y �, (3) X�� ⊆ X�.

Kuratowski’s theorem was studied in the setting of formal languages in [5].
Positive closure and Kleene closure (star) are both closure operations. It was
shown in [5] that at most 10 distinct languages can be produced by repeatedly
applying the operations of positive closure and complement to a given language,
and at most 14 distinct languages can be produced with Kleene closure instead
of positive closure. We consider here the case where the given language is closed
and regular, and give upper bounds for the complexity of the resulting languages.
Here we denote the complement of a language L by L−. Moreover, the positive
closure of the complement of L is denoted by L−+, etc.

We begin with positive closure. Let L be a E-closed language not equal to
Σ∗. Then L− is an ideal, and L−+ = L−. In addition, L+ is also E-closed, so
L+−+ = L+−. Hence there are at most 4 distinct languages that can be produced
with positive closure and complementation.

Theorem 6. The worst-case complexities in every 4-element algebra generated
by a closed language L with κ(L) = n under positive closure and complement
are: κ(L) = κ(L−) = n, κ(L+) = κ(L+−) = f(n), where f(n) is: 2n−2 + 1 for
prefix-closed languages, n − 1 for suffix-closed languages, and 2 for factor- and
subword-closed languages. There exist closed languages that meet these bounds.

Proof. Since L+ = L∗ for a non-empty closed language we have κ(L+) = κ(L∗),
and the upper bounds f(n) follow from our results on the quotient complexity of
star operation; in the case of suffix-closed languages, to get a 4-element algebra
we need L 6= L∗. All the languages that we have used in Theorem 4 to prove
tighness can be used as examples meeting the bound f(n). ⊓⊔

The case of Kleene closure is similar. Let be a E-closed language such that
L 6∈ {∅, Σ∗}. Then L− is an ideal and L− does not contain ε. Thus L−∗ =
L− ∪ ε and L−∗− = L \ ε, which gives at most four languages thus far. Now
L∗ = (L \ ε)∗, and L∗ is also E-closed. By the previous reasoning, we have at
most four additional languages, giving a total of eight languages as the upper
bound. The 8-element algebras are of the form (L, L−, L−∗ = L− ∪ ε, L−∗− =
L \ ε, L∗, L∗−, L∗−∗ = L∗− ∪ ε, L∗−∗− = L∗ \ ε).

Theorem 7. The worst-case complexities in every 8-element algebra generated
by a closed language L with κ(L) = n under Kleene closure and complement are:
κ(L) = κ(L−) = n, κ(L∗) = κ(L∗−) = f(n), κ(L∗−∗) = κ(L∗−∗−) = f(n) + 1,
κ(L−∗) = κ(L−∗−) = n+ 1, where f(n) is: 2n−2 + 1 for prefix-closed languages,
n− 1 for suffix-closed languages, and 2 for factor-and subword-closed languages,
Moreover, there exist closed languages that meet these bounds.

10

Proof. Since L−∗− = L \ ε and L∗−∗− = L∗ \ ε we have κ(L−∗−) ≤ n + 1 and
κ(L∗−∗−) ≤ f(n) + 1. In the case of suffix-closed languages, since L must be
distinct from L∗, we have f(n) = n− 1 by Theorem 4.

1. Let L be the prefix-closed language defined by the quotient automaton in
Fig. 5 on page 8; then L meets the upper bound on star. Add a loop with a
new letter d in each state and denote the resulting language by K. Then K is
a prefix-closed language with κ(K) = n and κ(K \ ε) = n + 1. Next we have
κ(K∗) = κ(L∗) = 2n−2 + 1 and κ(K∗ \ ε) = 2n−2 + 2.

2. Let L = b∗∪
⋃n−3

i=1 b∗aib. Then L is a suffix-closed language with κ(L) = n
and κ(L \ ε) = n+ 1. Next, κ(L∗) = n− 1, and κ(L∗ \ ε) = n.

3. Let L = {w ∈ {a, b, c}∗ | w = b∗ai and 0 ≤ i ≤ n − 2}. Then L is a
subword-closed language with κ(L) = n and κ(L\ε) = n+1. Next L∗ = {a, b}∗,
and so κ(L∗) = 2 and κ(L∗ \ ε) = 3. ⊓⊔

6 Conclusions

Tables 1 and 2 summarize our complexity results. The complexities for regular
languages are from [23], except those for difference and symmetric difference,
which are from [4]. The bounds for boolean operations and reversal of closed
languages are direct consequences of the results in [6]. In Table 2, k is the number
of accepting quotients of K.

K ∪ L K ∩ L K \ L K ⊕ L

unary closed max(m,n) max(m,n) m max(m,n)

≤-, ⊑-, ⋐-closed mn mn− (m+ n− 2) mn− (n− 1) mn

�-closed mn mn mn mn

regular mn mn mn mn

Table 1. Bounds on quotient complexity of boolean operations.

EL KL K∗ KR

unary closed n m+ n− 2 2 n

≤-closed n m2n−2 2n−2 + 1 2n−1

⊑-closed 2n−1 m+ n− 1 2 2n−2 + 1

⋐-closed 2n−2 + 1 m+ n− 1 2 2n−2 + 1

�-closed 2n − 1 (m− k)n+ k n 2n−1 + 1

regular − m2n − k2n−1 2n−1 + 2n−k−1 2n

Table 2. Bounds on quotient complexity of closure, product, star and reversal.

11

References

1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybernet., to appear

2. Avgustinovich, S.V., Frid, A.E.: A unique decomposition theorem for factorial lan-
guages. Internat. J. Algebra Comput. 15, 149–160 (2005)

3. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)
4. Brzozowski, J.: Quotient complexity of regular languages. In: Dassow, J.,

Pighizzini, G., Truthe, B. (eds.) DCFS 2009, pp. 25–42. Otto-von-Guericke-
Universität, Magdeburg, Germany (2009) http://arxiv.org/abs/0907.4547

5. Brzozowski, J., Grant, E., Shallit, J.: Closures in formal languages and Kura-
towski’s theorem. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583,
pp. 125–144. Springer, Heidelberg (2009)

6. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In:
LATIN 2010, to appear. Full paper at http://arxiv.org/abs/0908.2083

7. Brzozowski, J., Santean, N.: Predictable semiautomata. Theoret. Comput. Sci.
410, 3236–3249 (2009)

8. Brzozowski, J., Shallit, J., Xu, Z.: Decision procedures for convex languages. In:
Dediu, A., Ionescu, A., Martin-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
247-258. Springer, Heidelberg (2009)

9. Galil, Z., Simon, J.: A note on multiple-entry finite automata. J. Comput. System
Sci. 12, 350–351 (1976)

10. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1–19
(1974)

11. Haines, L.H.: On free monoids partially ordered by embedding. J. Combin. Theory
6, 94–98 (1969)

12. Han, Yo-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

13. Han, Yo-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Automata, Formal Languages, and Related Topics, pp. 99-
115. University of Szeged, Hungary (2009)

14. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Autom. Lang. Comb. 6, 453-466 (2001)

15. Kuratowski, C.: Sur l’opération A de l’analysis situs. Fund. Math. 3, 182–199
(1922)

16. de Luca, A., Varricchio, S.: Some combinatorial properties of factorial languages.
In: Capocelli, R. (ed.) Sequences, pp. 258–266. Springer (1990)

17. Okhotin. A: On the state complexity of scattered subwords and superwords. Turku
Centre for Computer Science Technical Report No. 849 (2007)

18. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13, 145-159 (2002)

19. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular lan-
guages. Theoret. Comput. Sci. 320, 315–329 (2004)

20. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and
Programming, pp. 481–492. North-Holland (1973)

21. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J. Com-
put. System Sci. 18, 304–306 (1979)

22. Yu., S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234
(2001)

23. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

12

