Abstract
We propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the Cgal library. The efficiency of the implementation is established by benchmarks.
This work was partially supported by the ANR (Agence Nationale de la Recherche) under the “Triangles” project of the Programme blanc ANR-07-BLAN-0319 http://www.inria.fr/geometrica/collaborations/triangles/
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hull, a program for convex hulls, http://www.netlib.org/voronoi/hull.html
Qhull, http://www.qhull.org/
Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
Core number library, http://cs.nyu.edu/exact/core_pages
Leda, Library for efficient data types and algorithms, http://www.algorithmic-solutions.com/enleda.htm
Three-dimensional convex hulls, http://www.simplex.t.u-tokyo.ac.jp/~sugihara/opensoft/opensofte.html
IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–58 (August 2008)
Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM Journal of Computing 16, 78–96 (1987)
Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)
Berger, M.: The space of spheres. In: Geometry, vol. 1-2, pp. 349–361. Springer, Heidelberg (1987)
Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, UK (1998); Translated by Hervé Brönnimann
Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24(2), 162–166 (1981)
Brown, K.Q.: Geometric transforms for fast geometric algorithms. Ph.D. thesis, Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Report CMU-CS-80-101 (1980)
Buchin, K.: Constructing Delaunay triangulations along space-filling curves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer, Heidelberg (2009)
Caroli, M., Teillaud, M.: 3D periodic triangulations. In: CGALial Editorial Bard (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 59–70. Springer, Heidelberg (2009); Full version available as INRIA Reserch Report No 6823, http://hal.inria.fr/inria-00356871
Clarkson, K.L.: Safe and effective determinant evaluation. In: Proceedings 33rd Annual IEEE Symposium on Foundations of Computer Science, October 1992, pp. 387–395 (1992)
Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Computational Geometry: Theory and Applications 3(4), 185–212 (1993)
Coxeter, H.S.M.: A geometrical background for de Sitter’s world. American Mathematical Monthly 50, 217–228 (1943)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)
de Castro, P.M.M., Cazals, F., Loriot, S., Teillaud, M.: 3D spherical geometry kernel. In: CGAL User and Reference Manual. CGAL Editorial Board, 3.5 edn. (2009)
de Castro, P.M.M., Cazals, F., Loriot, S., Teillaud, M.: Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere. Computational Geometry: Theory and Applications 42(6-7), 536–550 (2009)
Delage, C.: Spatial sorting. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Devillers, O., Meiser, S., Teillaud, M.: The space of spheres, a geometric tool to unify duality results on Voronoi diagrams. In: Proceedings 4th Canadian Conference on Computational Geometry, pp. 263–268 (1992); Full version available as INRIA Research Report No 1620, http://hal.inria.fr/inria-00074941
Fogel, E., Setter, O.: Software for Voronoi diagram on a sphere. Personal communication
Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of geodesic arcs on the sphere with applications. In: Abstracts of 24th European Workshop on Computational Geometry, pp. 83–86 (2008)
Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)
Hert, S., Schirra, S.: 3D convex hulls. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of robustness problems in geometric computations. Computational Geometry: Theory and Applications 40, 61–78 (2008)
Lawson, C.L.: Software for C 1 surface interpolation. In: Rice, J.R. (ed.) Math. Software III, pp. 161–194. Academic Press, New York (1977)
Li, C., Pion, S., Yap, C.K.: Recent progress in exact geometric computation. Journal of Logic and Algebraic Programming 64(1), 85–111 (2005)
Muller, J.M.: On the definition of \(\mbox{ulp}(x)\). Research Report 5504, INRIA (February 2005), http://hal.inria.fr/inria-00070503/
Na, H.S., Lee, C.N., Cheong, O.: Voronoi diagrams on the sphere. Computational Geometry: Theory and Applications 23, 183–194 (2002)
Pion, S., Teillaud, M.: 3D triangulation data structure. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Pion, S., Teillaud, M.: 3D triangulations. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Pion, S., Yvinec, M.: 2D triangulation data structure. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Renka, R.J.: Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Transactions on Mathematical Software 23(3), 416–434 (1997), Software available at http://orion.math.iastate.edu/burkardt/f_src/stripack/stripack.html
Sugihara, K.: Laguerre Voronoi diagram on the sphere. Journal for Geometry and Graphics 6(1), 69–81 (2002)
Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.-Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on Computing, vol. 4, pp. 452–492. World Scientific, Singapore (1995)
Yvinec, M.: 2D triangulations. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.5 edn. (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caroli, M., de Castro, P.M.M., Loriot, S., Rouiller, O., Teillaud, M., Wormser, C. (2010). Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere. In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-13193-6_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13192-9
Online ISBN: 978-3-642-13193-6
eBook Packages: Computer ScienceComputer Science (R0)