Skip to main content

Evolutionary Learning for Neuro-fuzzy Ensembles with Generalized Parametric Triangular Norms

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6113))

Included in the following conference series:

Abstract

In this paper we present a method for designing neuro-fuzzy systems with Mamdani-type inference and parametric t-norm connecting rule antecedents. Hamacher product was used as t-norm. The neuro-fuzzy systems are used to create an ensemble of classifiers. After obtaining the ensemble by bagging, every neuro-fuzzy system has its t-norm parameters fine-tuned. Thanks to this the accuracy is improved and the number of parameters can be reduced. The proposed method is tested on a well known benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)

    Google Scholar 

  2. Cordon, O., Herrera, F., Hoffman, F., Magdalena, L.: Genetic Fuzzy System, Evolutionary Tunning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2000)

    Google Scholar 

  3. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy sets and systems 141, 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Gabryel, M., Cpalka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  6. Gabryel, M., Rutkowski, L.: Evolutionary Learning of Mamdani-type Neuro-Fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 354–359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Gabryel, M., Rutkowski, L.: Evolutionary Methods for Designing Neuro-fuzzy Modular Systems Combined by Bagging Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 398–404. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Korytkowski, M., Gabryel, M., Rutkowski, L., Drozda, S.: Evolutionary Methods to Create Interpretable Modular System. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 405–413. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  10. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: general constructions and parametrized families. Fuzzy Sets and Systems 145, 411–438 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  12. Rutkowska, D., Nowicki, R.: Implication-Based Neuro-Fuzzy Architectures. Intenrational Journal of Applied Mathematics and Computer Science 10(4) (2000)

    Google Scholar 

  13. Rutkowska, D.: Neuro Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. Rutkowski, L.: Computational Inteligence, Methods and Techniques. Springer, Heidelberg (2008)

    Google Scholar 

  15. Rutkowski, L.: Flexible Neuro Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  16. Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabryel, M., Korytkowski, M., Pokropinska, A., Scherer, R., Drozda, S. (2010). Evolutionary Learning for Neuro-fuzzy Ensembles with Generalized Parametric Triangular Norms. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13208-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13207-0

  • Online ISBN: 978-3-642-13208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics