Abstract
In this paper we present a method for designing neuro-fuzzy systems with Mamdani-type inference and parametric t-norm connecting rule antecedents. Hamacher product was used as t-norm. The neuro-fuzzy systems are used to create an ensemble of classifiers. After obtaining the ensemble by bagging, every neuro-fuzzy system has its t-norm parameters fine-tuned. Thanks to this the accuracy is improved and the number of parameters can be reduced. The proposed method is tested on a well known benchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L.: Bagging predictors. Machine Learning 26(2), 123–140 (1996)
Cordon, O., Herrera, F., Hoffman, F., Magdalena, L.: Genetic Fuzzy System, Evolutionary Tunning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2000)
Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy sets and systems 141, 5–31 (2004)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
Gabryel, M., Cpalka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)
Gabryel, M., Rutkowski, L.: Evolutionary Learning of Mamdani-type Neuro-Fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 354–359. Springer, Heidelberg (2006)
Gabryel, M., Rutkowski, L.: Evolutionary Methods for Designing Neuro-fuzzy Modular Systems Combined by Bagging Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 398–404. Springer, Heidelberg (2008)
Korytkowski, M., Gabryel, M., Rutkowski, L., Drozda, S.: Evolutionary Methods to Create Interpretable Modular System. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 405–413. Springer, Heidelberg (2008)
Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg (2000)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: general constructions and parametrized families. Fuzzy Sets and Systems 145, 411–438 (2004)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Rutkowska, D., Nowicki, R.: Implication-Based Neuro-Fuzzy Architectures. Intenrational Journal of Applied Mathematics and Computer Science 10(4) (2000)
Rutkowska, D.: Neuro Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)
Rutkowski, L.: Computational Inteligence, Methods and Techniques. Springer, Heidelberg (2008)
Rutkowski, L.: Flexible Neuro Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)
Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabryel, M., Korytkowski, M., Pokropinska, A., Scherer, R., Drozda, S. (2010). Evolutionary Learning for Neuro-fuzzy Ensembles with Generalized Parametric Triangular Norms. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-13208-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13207-0
Online ISBN: 978-3-642-13208-7
eBook Packages: Computer ScienceComputer Science (R0)