Abstract
We extend our works of deriving linguistic summaries of time series using a fuzzy logic approach to linguistic summarization. We proceed towards a multicriteria analysis of summaries by assuming as a quality criterion Yager’s measure of informativeness that combines in a natural way the measures of truth, focus and specificity, to obtain a more advanced evaluation of summaries. The use of the informativeness measure for the purpose of a multicriteria evaluation of linguistic summaries of time series seems to be an effective and efficient approach, yet simple enough for practical applications. Results on the summarization of quotations of an investment (mutual) fund are very encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159(12), 1485–1499 (2008)
Kacprzyk, J., Wilbik, A.: Linguistic summarization of time series using fuzzy logic with linguistic quantifiers: a truth and specificity based approach. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 241–252. Springer, Heidelberg (2008)
Kacprzyk, J., Wilbik, A.: Linguistic summarization of time series using linguistic quantifiers: augmenting the analysis by a degree of fuzziness. In: Proceedings of 2008 IEEE WCCI, pp. 1146–1153. IEEE Press, Los Alamitos (2008)
Kacprzyk, J., Wilbik, A.: A new insight into the linguistic summarization of time series via a degree of support: elimination of infrequent patterns. In: Dubois, D., et al. (eds.) Soft Methods for Handling Variability and Imprecision, pp. 393–400. Springer, Heidelberg (2008)
Kacprzyk, J., Wilbik, A.: Towards an efficient generation of linguistic summaries of time series using a degree of focus. In: Proceedings of NAFIPS 2009 (2009)
Kacprzyk, J., Zadrożny, S.: FQUERY for Access: fuzzy querying for a windows-based dbms. In: Bosc, P., et al. (eds.) Fuzziness in Database Management Systems, pp. 415–433. Springer, Heidelberg (1995)
Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: toward natural language based knowledge discovery tools. Information Sciences 173, 281–304 (2005)
Past performance does not predict future performance, http://www.freemoneyfinance.com/2007/01/past_performanc.html
Past performance is not everything, http://www.personalfn.com/detail.asp?date=9/1/2007&story=3
New year’s eve: past performance is no indication of future return stockcasting, blogspot.com/2005/12/new-years-evepast-performance-is-no.html
Myers, R.: Using past performance to pick mutual funds. Nation’s Business (October 1997), findarticles.com/p/articles/mi_m1154/is_n10_v85/ai_19856416
Bogle, J.C.: Common Sense on Mutual Funds: New Imperatives for the Intelligent Investor. Wiley, New York (1999)
Securities, U., Commission, E.: Mutual fund investing: Look at more than a fund’s past performance, http://www.sec.gov/investor/pubs/mfperform.htm
Yager, R.R.: A new approach to the summarization of data. Information Sciences 28, 69–86 (1982)
Yager, R.R.: On linguistic summaries in data. In: Piatetsky-Shapiro, G., et al. (eds.) Knowledge Discovery in Databases, pp. 347–363. MIT Press, Cambridge (1991)
Kacprzyk, J., Zadrożny, S.: Data mining via protoform based linguistic summaries: some possible relations to natural language generation. In: 2009 IEEE Symposium Series on Computational Intelligence Proceedings, pp. 217–224 (2009)
Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recognition 12(5), 327–331 (1980)
Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings of the 2001 IEEE ICDM (2001)
Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. In: Last, M., et al. (eds.) Data Mining in Time Series Databases, World Scientific Publishing, Singapore (2004)
Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. International Journal of General Systems 30, 33–154 (2001)
Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. International Journal of Applied Mathematics and Computer Science 10, 813–834 (2000)
Kacprzyk, J., Yager, R.R., Zadrożny, S.: Fuzzy linguistic summaries of databases for an efficient business data analysis and decision support. In: Abramowicz, W. (ed.) Knowledge Discovery for Business Information Systems, pp. 129–152. Kluwer, Dordrecht (2001)
Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 9(2), 111–127 (1983)
Yager, R.R., Ford, K.M., Cañas, A.J.: An approach to the linguistic summarization of data, pp. 456–468. Springer, Heidelberg (1990)
Sripada, S., Reiter, E., Davy, I.: Sumtime-mousam: Configurable marine weather forecast generator. Expert Update 6(3), 4–10 (2003)
Kacprzyk, J., Zadrożny, S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries and natural language generation. IEEE Transactions on Fuzzy Systems (forthcoming)
Batyrshin, I.: On granular derivatives and the solution of a granular initial value problem. International Journal Applied Mathematics and Computer Science 12(3), 403–410 (2002)
Batyrshin, I., Sheremetov, L.: Perception based functions in qualitative forecasting. In: Batyrshin, I., et al. (eds.) Perception-based Data Mining and Decision Making in Economics and Finance. Springer, Heidelberg (2006)
Zadeh, L.A.: A prototype-centered approach to adding deduction capabilities to search engines – the concept of a protoform. In: Proceedings of NAFIPS 2002, pp. 523–525 (2002)
Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series under different granulation of describing features. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A., et al. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 230–240. Springer, Heidelberg (2007)
Yager, R.R.: On measures of specificity. In: Kaynak, O., et al. (eds.) Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, pp. 94–113. Springer, Heidelberg (1998)
Yager, R.R.: Measuring tranquility and anxiety in decision making: An application of fuzzy sets. International Journal of General Systems 8, 139–146 (1982)
Zadeh, L.A.: Computation with imprecise probabilities. In: IPMU 2008 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wilbik, A., Kacprzyk, J. (2010). A Multi-criteria Evaluation of Linguistic Summaries of Time Series via a Measure of Informativeness. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-13208-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13207-0
Online ISBN: 978-3-642-13208-7
eBook Packages: Computer ScienceComputer Science (R0)