Skip to main content

A New Fuzzy Approach to Ordinary Differential Equations

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6113))

Included in the following conference series:

Abstract

In real-life problems, both parameters and data used in mathematical modeling are often vague or uncertain. In fields like system biology, diagnosis, image analysis, fault detection and many others, fuzzy differential equations and stochastic differential equations are an alternative to classical, or in the present context crisp, differential equations. The aim of the paper is to propose a new formulation of fuzzy ordinary differential equations for which the Hukuhara derivative is not needed. After a short review of recent results in the theory of ordered fuzzy numbers, an exemplary application to a dynamical system in mechanics is presented. Departing from the classical framework of dynamics, equations describing the fuzzy representation of the state are introduced and solved numerically for chosen fuzzy parameters and initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buckley James, J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Sets. Physica-Verlag, Springer, Heidelberg (2005)

    Google Scholar 

  2. Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore (1993)

    Google Scholar 

  3. Drewniak, J.: Fuzzy numbers (in Polish). In: Chojcan, J., Łȩski, J. (eds.) Zbiory rozmyte i ich zastosowania, Wydawnictwo Politechniki Śla̧skiej, Gliwice, pp. 103–129 (2001)

    Google Scholar 

  4. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. System Science 9, 576–578 (1978)

    MathSciNet  Google Scholar 

  5. Goetschel Jr., R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18, 31–43 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hukuhara, M.: Intégration des applications measurables dont la valeur est un compact convexe (in French). Funkcial. Ekvac. 10, 205–223 (1967)

    MATH  MathSciNet  Google Scholar 

  7. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems 91, 165–175 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kosiński, W.: On defuzzyfication of ordered fuzzy numbers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 326–331. Springer, Heidelberg (2004)

    Google Scholar 

  10. Kosiński, W.: On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 16(1), 51–57 (2006)

    MathSciNet  Google Scholar 

  11. Kosiński, W.: On soft computing and modelling. Image Processing Communications 11(1), 71–82 (2006)

    Google Scholar 

  12. Kosiński, W., Frischmuth, K., Piasecki, W.: Fuzzy approach to hyperbolic heat conduction equations. In: Kuczma, M., Wilmański, K., Szajna, W. (eds.) 18th Intern. Confer. on Computational Methods in Mechanics, CMM 2009, Short Papers, Zielona Góra, May 2009, pp. 249–250 (2009)

    Google Scholar 

  13. Kosiński, W., Prokopowicz, P., Kacprzak, D.: Fuzziness - representation of dynamic changes by ordered fuzzy numbers. In: Seising, R. (ed.) Views of Fuzzy Sets and Systems from Different Perspectives. Studies in Fuzziness and Soft Computing, vol. (243), pp. 485–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Fuzzy numbers with algebraic operations: algorithmic approach. In: Kłopotek, M., Wierzchoń, S.T., Michalewicz, M. (eds.) Intelligent Information Systems 2002, Proc. IIS 2002, Sopot, Poland, June 3-6, pp. 311–320. Physica Verlag, Heidelberg (2002)

    Google Scholar 

  15. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: On algebraic operations on fuzzy reals. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, Proc. of the Sixth Int. Conference on Neural Network and Soft Computing, Zakopane, Poland, June 11-15 (2002), pp. 54–61. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  16. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers. Bulletin of the Polish Academy of Sciences, Ser. Sci. Math. 51(3), 327–338 (2003)

    Google Scholar 

  17. Kosiński, W., Prokopowicz, P.: Algebra of fuzzy numbers (in Polish). Matematyka Stosowana 5(46), 37–63 (2004)

    Google Scholar 

  18. Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Calculus with fuzzy numbers. In: Bolc, L., Michalewicz, Z., Nishida, T. (eds.) IMTCI 2004. LNCS (LNAI), vol. 3490, pp. 21–28. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Kosiński, W., Słysz, P.: Fuzzy reals and their quotient space with algebraic operations. Bull. Pol. Acad. Sci., Sér. Techn. Scien. 41(30), 285–295 (1993)

    MATH  Google Scholar 

  20. Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor and Francis, Abington (2003)

    Book  MATH  Google Scholar 

  21. Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sanchez, E.: Solutions of fuzzy equations with extended operations. Fuzzy Sets and Systems 12, 237–248 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wagenknecht, M.: On the approximate treatment of fuzzy arithmetics by inclusion, linear regression and information content estimation. In: Chojcan, J., Łȩski, J. (eds.) Zbiory rozmyte i ich zastosowania, Wydawnictwo Politechniki Śla̧skiej, Gliwice, pp. 291–310 (2001)

    Google Scholar 

  24. Wagenknecht, M., Hampel, R., Schneider, V.: Computational aspects of fuzzy arithmetic based on archimedean t-norms. Fuzzy Sets and Systems 123(1), 49–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Part I. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosiński, W., Frischmuth, K., Wilczyńska-Sztyma, D. (2010). A New Fuzzy Approach to Ordinary Differential Equations. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13208-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13207-0

  • Online ISBN: 978-3-642-13208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics