Abstract
The paper deals with the multi-class (polychotomous) classification problem solved using an ensemble of binary classifiers. The use of the Dempster-Shafer theory to combine the results of binary classifiers is studied. Two approaches are proposed and compared. Some experimental results are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)
Gromisz, M.: On the application of an ensemble of classifiers for data preselection. In: Hołubiec, J. (ed.) Systems Analysis for Financial and Management Applications, vol. 11, EXIT, Warszawa (2009) (in Polish)
Fürnkranz, J.: Round robin classification. J. of Mach. Learn. Res. 2, 721–747 (2002)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. J. Wiley & Sons, Chichester (2001)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)
Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)
Yager, R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Syst., Man and Cybern. 18, 183–190 (1988)
Quost, B., Denoeux, T., Masson, M.H.: Pairwise classifier combination using belief functions. Pattern Recognition Letters 28(5), 644–653 (2007)
Burger, T., Aran, O., Caplier, A.: Modeling hesitation and conflict: A belief-based approach for multi-class problems. In: Proceedings of the 5th ICMLA Conference, Washington, DC, USA, pp. 95–100. IEEE Computer Society, Los Alamitos (2006)
Denoeux, T.: Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognition 30(7), 1095–1107 (1997)
Yager, R.R.: Decision making under Dempster-Shafer uncertainties. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol. 219, pp. 619–632. Springer, Heidelberg (2008)
Smets, P.: The degree of belief in a fuzzy event. Inf. Sci. 25(1), 1–19 (1981)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Clark, D., Schreter, Z., Adams, A.: A quantitative comparison of dystal and backpropagation. In: Proceedings of the Seventh ACNN Conference, Australia (1996)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gromisz, M., Zadrożny, S. (2010). Combining the Results in Pairwise Classification Using Dempster-Shafer Theory: A Comparison of Two Approaches. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13208-7_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-13208-7_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13207-0
Online ISBN: 978-3-642-13208-7
eBook Packages: Computer ScienceComputer Science (R0)