Abstract
The aim of this paper is to present a parallel architecture of Elman Recurrent Network learning algorithm. The solution is based on the high parallel cuboid structure to speed up computation. Parallel neural network structures are explicitly presented and the performance discussion is included.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)
Bilski, J., Smola̧g, J.: Parallel realisation of the RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)
Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
Kolen, J.F., Kremer, S.C.: A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Los Alamitos (2001)
Korbicz, J., Patan, K., Obuchowicz, A.: Dynamic neural networks for process modelling in fault detection and isolation. Int. J. Appl. Math. Comput. Sci. 9(3), 519–546 (1999)
Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc. of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)
Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)
Williams, R., Zipser, D.: A learning algorithm for continually running fully recurrent neural network. Neural Computation, 270–280 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bilski, J., Smola̧g, J. (2010). Parallel Realisation of the Recurrent Elman Neural Network Learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13232-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13231-5
Online ISBN: 978-3-642-13232-2
eBook Packages: Computer ScienceComputer Science (R0)