Abstract
Fast and simplified image processing and analysis methods can be successfully implemented for the robot control algorithms. Statistical methods seem to be very useful for such an approach, mainly because a significant reduction of analysed data is possible. In the paper the use of the fast image analysis based on the Monte Carlo area estimation for the simplified binary representation of the image is analysed and proposed for the mobile robot control. A possible implementation of the proposed method can applied in the line tracking robots and such application has been treated as the basic one for the testing purposes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, D., Odobez, J.-M.: Sequential Monte Carlo Video Text Segmentation. In: International Conference on Image Processing, ICIP 2003, vol. 3, pp. 21–24. IEEE Press, New York (2003)
Dupuis, J., Parizeau, M.: Evolving a Vision-Based Line-Following Robot Controller. In: 3rd Canadian Conference on Computer and Robot Vision, June 7-9, pp. 75–75 (2006), doi:10.1109/CRV.2006.3
Fearnhead, P.: Computational Methods for Complex Stochastic Systems: A Review of Some Alternatives to MCMC. Statistics and Computing 18(2), 151–171 (2008)
Okarma, K., Lech, P.: Monte Carlo Based Algorithm for Fast Preliminary Video Analysis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 790–799. Springer, Heidelberg (2008)
Okarma, K., Lech, P.: A Statistical Reduced-Reference Approach to Digital Image Quality Assessment. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS, vol. 5337, pp. 43–54. Springer, Heidelberg (2009)
Rahman, M., Rahman, M.H.R., Haque, A.L., Islam, M.T.: Architecture of the Vision System of a Line Following Mobile Robot Operating in Static Environment. In: 9th International Multitopic Conference, IEEE INMIC 2005, December 24-25, pp. 1–8 (2005), doi:10.1109/INMIC.2005.334473
Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, Chichester (1981)
Vermaak, J., Ikoma, N., Godsill, S.J.: Sequential Monte Carlo Framework for Extended Object Tracking. IEE Proc. Radar Sonar Navig. 152(5), 353–363 (2005)
Zhai, Y., Shah, M.: Video Scene Segmentation Using Markov Chain Monte Carlo. IEEE Trans. on Multimedia 8(4), 686–697 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Okarma, K., Lech, P. (2010). A Fast Image Analysis Technique for the Line Tracking Robots. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-13232-2_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13231-5
Online ISBN: 978-3-642-13232-2
eBook Packages: Computer ScienceComputer Science (R0)