Skip to main content

A Fast Image Analysis Technique for the Line Tracking Robots

  • Conference paper
Artifical Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6114))

Included in the following conference series:

  • 2050 Accesses

Abstract

Fast and simplified image processing and analysis methods can be successfully implemented for the robot control algorithms. Statistical methods seem to be very useful for such an approach, mainly because a significant reduction of analysed data is possible. In the paper the use of the fast image analysis based on the Monte Carlo area estimation for the simplified binary representation of the image is analysed and proposed for the mobile robot control. A possible implementation of the proposed method can applied in the line tracking robots and such application has been treated as the basic one for the testing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, D., Odobez, J.-M.: Sequential Monte Carlo Video Text Segmentation. In: International Conference on Image Processing, ICIP 2003, vol. 3, pp. 21–24. IEEE Press, New York (2003)

    Google Scholar 

  2. Dupuis, J., Parizeau, M.: Evolving a Vision-Based Line-Following Robot Controller. In: 3rd Canadian Conference on Computer and Robot Vision, June 7-9, pp. 75–75 (2006), doi:10.1109/CRV.2006.3

    Google Scholar 

  3. Fearnhead, P.: Computational Methods for Complex Stochastic Systems: A Review of Some Alternatives to MCMC. Statistics and Computing 18(2), 151–171 (2008)

    Article  MathSciNet  Google Scholar 

  4. Okarma, K., Lech, P.: Monte Carlo Based Algorithm for Fast Preliminary Video Analysis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 790–799. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Okarma, K., Lech, P.: A Statistical Reduced-Reference Approach to Digital Image Quality Assessment. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS, vol. 5337, pp. 43–54. Springer, Heidelberg (2009)

    Google Scholar 

  6. Rahman, M., Rahman, M.H.R., Haque, A.L., Islam, M.T.: Architecture of the Vision System of a Line Following Mobile Robot Operating in Static Environment. In: 9th International Multitopic Conference, IEEE INMIC 2005, December 24-25, pp. 1–8 (2005), doi:10.1109/INMIC.2005.334473

    Google Scholar 

  7. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, Chichester (1981)

    Book  MATH  Google Scholar 

  8. Vermaak, J., Ikoma, N., Godsill, S.J.: Sequential Monte Carlo Framework for Extended Object Tracking. IEE Proc. Radar Sonar Navig. 152(5), 353–363 (2005)

    Article  Google Scholar 

  9. Zhai, Y., Shah, M.: Video Scene Segmentation Using Markov Chain Monte Carlo. IEEE Trans. on Multimedia 8(4), 686–697 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okarma, K., Lech, P. (2010). A Fast Image Analysis Technique for the Line Tracking Robots. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13232-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13231-5

  • Online ISBN: 978-3-642-13232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics