Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 296))

  • 543 Accesses

Summary

One of the attractions to the study of one dimensional systems is the technological interest of their possible effects in nanoelectronics [1]. There are myriads or papers on the solution to the problem of the electronic properties of one dimensional systems. Few of these papers use python for visualization but none has used python as a tool for solving this problem from first principle. In this paper, we present several techniques of using Python as a tool in computational analysis. We report the results of using python to study the electronic properties of an infinite linear chain of atoms. We use the principles of nearest neighbor and directly calculated the eigenvalues of our system. We also derived the green function for the system and compared the eigenvalues obtained from the green function with those directly calculated. Visualization of our results was achieved using Matplotlib, a powerful yet, easy to use Python plotting library. Our results show an agreement between the eigenvalues obtained by direct calculation and those obtained using our derived green function for the system. The results also show the simplicity of Python as an analytical tool in computational sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, H., Marsi, M., Margaritondo, G., Forro, L., Beeli, C., Crotti, C., Zacchigna, M., Comicioli, C., Astaldi, C., Prince, K.: On the electronic properties of the quasi-one-dimensional crystal Nb4Te17I4. Journal of Physics D: Applied Physics 29(3) (1996)

    Google Scholar 

  2. Lu, J.P., Birman, J.L.: Electronic Structure of a Quasiperiodic System. Phys. Rev. B Rapid. Comm. 36, 4471–4474 (1987)

    Google Scholar 

  3. Lu, J.P., Odagaki, T., Birman, J.L.: Properties of One Dimensional Quasilattices. Phys. Rev. B 33, 4809–4816 (1986)

    Article  Google Scholar 

  4. Niu, Q., Nori, F.: Renormalization-Group Study of One-Dimensional Quasiperiodic Systems. Phys. Rev. Lett. 57, 2057–2060 (1986)

    Article  Google Scholar 

  5. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 15(5) (2003)

    Google Scholar 

  6. Langtangen, H.P.: Python Scripting for Computational Science, 3rd edn. Springer, Heidelberg (2009)

    Google Scholar 

  7. Johansson, C.H., Linde, J.O.: Ann. Phys. (Leipzig ) 25(1) (1936)

    Google Scholar 

  8. Kohmoto, M., Kadanoff, L., Tang, C.: Localization Problem in One Dimension: Mapping and Escape. Phys. Rev. Lett. 50, 1870 (1983)

    Article  MathSciNet  Google Scholar 

  9. Oallund, S., Pandit, R., Rand, D., Schellnhuber, H.J., Siggia, E.D.: One-Dimensional Schrödinger Equation with an Almost Periodic Potential. Phys. Rev. Lett.  50 (1983)

    Google Scholar 

  10. Kohmoto, M., Sutherland, B., Tang, C.: Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B 35 (1987)

    Google Scholar 

  11. Bernholdt, D.E., Armstrong, R.C., Allan, B.A.: Managing complexity in modern high end scientific computing through component-based software engineering. In: Proceedings of HPCA Workshop on Productivity and Performance in High-End Computing (2004)

    Google Scholar 

  12. Holzmann, M., Tobben, D., Abstreiter, G., Wendel, M., Lorenz, H., Kotthaus, J.P., Schaffler, F.: One-dimensional transport of electrons in Si/Si0.7Ge0.3 heterostructures. Appl. Phys. Lett. 66(7) (1995)

    Google Scholar 

  13. Wallis, T.M., Nilius, N., Mikaelian, G., Ho, W.: Electronic properties of artificial Au chains with individual Pd impurities. J. Chem. Phys. 122, 011101 (2005)

    Article  Google Scholar 

  14. Enomoto, S., Kurokawa, S., Sakai, A.: Quantized conductance in Au-Pd and Au-Ag alloy nanocontacts. Phys. Rev. B 65, 125410 (2002)

    Article  Google Scholar 

  15. Bose, S.M., Feng, D.H., Gilnzore, R., Prutzer, S.: Electronic density of states of a one-dimensional superlattice. J. Phys. F: Metal Phys. 10, 1129–1133 (1980)

    Article  Google Scholar 

  16. Avishai, Y., Band, Y.B.: One Dimensional Density of States and the Phase of the Transmission Amplitude. Phys. Rev. B 32 (1985) (Rapid Communication)

    Google Scholar 

  17. Newman, M.E.: Green’s functions, density of states, and dynamic structure factor for a general one-dimensional quasicrystal. Phys. Rev. B 43(13) (1991)

    Google Scholar 

  18. Beazley, D.M., Lomdahl, P.S.: Lightweight Computational Steering of Very Large Scale Molecular Dynamics Simulations. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, p. 50 (1996)

    Google Scholar 

  19. Beazley, D.M., Lomdahl, P.S.: Feeding a large-scale physics application to Python. In: Proceedings of the 6th International Python Conference (1997)

    Google Scholar 

  20. Hinsen, K.: The Molecular Modeling Toolkit: a case study of a large scientific application in Python. In: Proceedings of the 6th International Python Conference (1997)

    Google Scholar 

  21. Beazley, D.M., Lomdahl, P.S.: Building Flexible Large-Scale Scientific Computing Applications with Scripting Languages. In: The 8th SIAM Conference on Parallel Processing for Scientific Computing (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Famutimi, E.O., Stinson, M., Lee, R. (2010). Study of One Dimensional Molecular Properties Using Python. In: Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds) Software Engineering Research, Management and Applications 2010. Studies in Computational Intelligence, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13273-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13273-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13272-8

  • Online ISBN: 978-3-642-13273-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics