Skip to main content

A Biologically-Inspired Automatic Matting Method Based on Visual Attention

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6064))

Included in the following conference series:

  • 1744 Accesses

Abstract

Image matting is an important task in image and video editing. In this paper we propose a novel automatic matting approach, which can provide a good set of constraints without human intervention. We use the attention shift trace in a temporal sequence as the useful constraints for matting algorithm instead of user-specified “scribbles”. Then we propose a modified visual selective attention mechanism which considered two Gestalt rules (proximity & similarity) for shifting the processing focus. Experimental results on real-world data show that the constraints are useful. Distinct from previous approaches, the algorithm presents the advantage of being biologically plausible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apolstoloff, N., Fitzgibbon, A.: Bayesian Video Matting Using Learnt Image Priors. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, vol. 1, pp. 407–414 (2004)

    Google Scholar 

  2. Bai, X., Sapiro, G.: A Geodesic Framework for Fast Interactive Image and Video Segmentation and Matting. In: 11th IEEE International Conference on Computer Vision, Rio De Janeiro, pp. 1–8 (2007)

    Google Scholar 

  3. Chuang, Y., Curless, B., Salesin, D., Szeliski, R.: A Bayesian Approach to Digital Matting. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hawaii, vol. II, pp. 264–271 (2001)

    Google Scholar 

  4. Levin, A., Lischinski, D., Weiss, Y.: A Closed Form Solution to Natural Image Matting. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, vol. 1, pp. 61–68 (2006)

    Google Scholar 

  5. Rhemann, C., Rother, C., Gelautz, M.: Improving Color Modeling for Alpha Matting. In: British Machine Vision Conference 2008, Leeds, pp. 1155–1164 (2008)

    Google Scholar 

  6. Wang, J., Cohen, M.: An Iterative Optimization Approach for Unified Image Segmentation and Matting. In: 10th IEEE International Conference on Computer Vision, Beijing, vol. 2, pp. 936–943 (2005)

    Google Scholar 

  7. Apostoloff, N., Fitzgibbon, A.: Automatic Video Segmentation Using Spatiotemporal T-junctions. In: British Machine Vision Conference 2006, Edinburgh, pp. 1–10 (2006)

    Google Scholar 

  8. Tsotsos, J.K., Culhane, S.M., Wai, W., Lai, Y.H., Davis, N., Nuflo, F.: Modeling Visual Attention via Selective Tuning. Artificial Intelligence 78, 507–545 (1995)

    Article  Google Scholar 

  9. Itti, L., Koch, C.: Computational Modelling of Visual Attention. Nature Reviews Neuroscience (2001)

    Google Scholar 

  10. Walther, D., Koch, C.: Modeling Attention to Salient Proto-objects. Neural Networks 19, 1395–1407 (2006)

    Article  MATH  Google Scholar 

  11. Li, M., Clark, J.J.: Selective Attention in the Learning of Invariant Representation of Objects. In: 2005 IEEE Computer Society International Conference on Computer Vision and Pattern Recognition, San Diego, vol. 3, pp. 93–101 (2005)

    Google Scholar 

  12. Posner, M.I.: Orienting of Attention. Quat. J. Exper. Psych. 32, 2–25 (1980)

    Google Scholar 

  13. Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional Selection for Object Recognition – a Gentle Way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002a)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, W., Luo, S., Wu, L. (2010). A Biologically-Inspired Automatic Matting Method Based on Visual Attention. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13318-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13318-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13317-6

  • Online ISBN: 978-3-642-13318-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics