Skip to main content

A New Image Enhancement Method Based on Nonsubsampled Contourlet Transform

  • Conference paper
Advanced Communication and Networking (ACN 2010)

Abstract

This paper presents a new image enhancement method based on Nonsubsampled Contourlet Transform (NSCT). The contourlet transform is a new extension of the wavelet transform that provides a multi-resolution and multi-direction analysis for two dimension images. The NSCT expansion is composed of basis images oriented at various directions in multiple scales, with flexible aspect ratios. Existing image enhancement methods cannot confine the directional edge information of the image. Given this rich set of basis images, the NSCT transform effectively captures direction edges that are the dominant feature in natural images. Each pixel is enhanced using nonlinear mapping functions depending on the category of the edges. Experimental results ascertain that the proposed method gives better performance of image enhancement than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosebfield, A., Kak, A.C.: Digital Picture processing. Academic Press, San Diego (1976)

    Google Scholar 

  2. Gonzalez, R.C., Woods, R.E.: Digital Image processing. Addison Wesley, Reading (2003)

    Google Scholar 

  3. Harris, J.: Contrast variance enhancement: a digital processing technique. Appl. Opt. 16, 1268–1271 (1977)

    Article  Google Scholar 

  4. Elliot, D.F., Rao, K.R.: Fast transforms: Algorithms, analyzes, applications. Academic, New York (1983)

    Google Scholar 

  5. Wang, D., Vagnucci, A.H.: Digital image enhancement. Comput. Vis., Graph, Image Process. 24, 363–381 (1981)

    Article  Google Scholar 

  6. Morrow, W.M., et al.: Region-Based Contrast Enhancement of Mammograms. IEEE Trans. Med. Imag. 11(3) (September 1992)

    Google Scholar 

  7. Ji, T.L., Sundareshan, M.K., Roehrig, H.: Adaptive image contrast enhancement based on human visual properties. IEEE Trans. Med. Imag. 13(4), 573–586 (1994)

    Article  Google Scholar 

  8. Zamperoni, P.: Image enhancement. Adv. Image Electron Phys. 92, 1–7 (1995)

    Article  MATH  Google Scholar 

  9. Prager, K.E., Singer, P.F.: Image enhancement and filtering using wavelets. In: Proc. 25th Asilomar Conf. Signals, Systems and computers, vol. 1(3), pp. 169–174 (1991)

    Google Scholar 

  10. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 710–732 (1992)

    Article  Google Scholar 

  11. Laine, A., Fan, J., Yang, W.: Wavelets for contrast enhancement of mammography. IEEE Eng. Med. Biol. 14, 536–550 (1995)

    Article  Google Scholar 

  12. Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  13. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  14. Do, M.N., Vetterli, M.: Framing pyramids. IEEE Trans. Signal Process. 51(9), 2329–2342 (2003)

    Article  MathSciNet  Google Scholar 

  15. Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design and applications. IEEE Trans. Image Proc. 15(4), 3089–3101 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hossain, M.F., Alsharif, M.R., Yamashita, K. (2010). A New Image Enhancement Method Based on Nonsubsampled Contourlet Transform. In: Chang, CC., Vasilakos, T., Das, P., Kim, Th., Kang, BH., Khurram Khan, M. (eds) Advanced Communication and Networking. ACN 2010. Communications in Computer and Information Science, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13405-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13405-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13404-3

  • Online ISBN: 978-3-642-13405-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics