Abstract
The approach investigated in this work employs three-dimensional LADAR measurements to detect and track pedestrians over time. The sensor is employed on a moving vehicle. The algorithm quickly detects the objects which have the potential of being humans using a subset of these points, and then classifies each object using statistical pattern recognition techniques. The algorithm uses geometric and motion features to recognize human signatures. The perceptual capabilities described form the basis for safe and robust navigation in autonomous vehicles, necessary to safeguard pedestrians operating in the vicinity of a moving robotic vehicle.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arras, K.O., Mozos, O.M., Burgard, W.: Using Boosted Features for the Detection of People in 2D Range Data. In: Proc. of the 2007 IEEE Int. Conf. on Robotics and Automation, Roma, Italy, April 10-14, pp. 3402–3407 (2007)
Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. In: Data Mining and Knowledge Discovery, vol. 2, pp. 121–167. Kluwer Academic Pub., Boston (1998)
Howard, A., Matthies, L.H., Huertas, A., Bajracharya, M., Rankin, A.: Detecting Pedestrians with Stereo Vision: Safe Operation of Autonomous Ground Vehicles in Dynamic Environments. In: Proc. of the 13th. International Symposium of Robotics Research, November 26-29 (2007)
Morris, D., Colonna, B., Haley, P.: Ladar-based Mover Detection from Moving Vehicles. In: Proc. of the 25th Army Science Conference (November 2006)
Navarro-Serment, L.E., Mertz, C., Hebert, M.: Predictive Mover Detection and Tracking in Cluttered Environments. In: Proc. of the 25th. Army Science Conference, November 27-30 (2006)
Navarro-Serment, L.E., Mertz, C., Vandapel, N., Hebert, M.: LADAR-based Pedestrian Detection and Tracking. In: IEEE Workshop on Human Detection from Mobile Platforms, Pasadena, California, May 20 (2008)
Shoemaker, C.M., Bornstein, J.A.: The Demo III UGV Program: a Testbed for Autonomous Navigation Research. In: Proc. of the IEEE Int. Symposium on Intelligent Control, Gaithersburg, MD, September 1998, pp. 644–651 (1998)
Thornton, S., Hoffelder, M., Morris, D.: Multi-sensor Detection and Tracking of Humans for Safe Operations with Unmanned Ground Vehicles. In: 1st. IEEE Workshop on Human Detection from Mobile Platforms, Pasadena, California, May 20 (2008)
Thornton, S., Patil, R.: Robust Detection of Humans Using Multi-sensor Features. In: Proc. of the 26th. Army Science Conference, December 1-4 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Navarro-Serment, L.E., Mertz, C., Hebert, M. (2010). Pedestrian Detection and Tracking Using Three-Dimensional LADAR Data. In: Howard, A., Iagnemma, K., Kelly, A. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13408-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-13408-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13407-4
Online ISBN: 978-3-642-13408-1
eBook Packages: EngineeringEngineering (R0)