Abstract
The field of intelligent tutoring systems has been using the well known knowledge tracing model, popularized by Corbett and Anderson (1995), to track student knowledge for over a decade. Surprisingly, models currently in use do not allow for individual learning rates nor individualized estimates of student initial knowledge. Corbett and Anderson, in their original articles, were interested in trying to add individualization to their model which they accomplished but with mixed results. Since their original work, the field has not made significant progress towards individualization of knowledge tracing models in fitting data. In this work, we introduce an elegant way of formulating the individualization problem entirely within a Bayesian networks framework that fits individualized as well as skill specific parameters simultaneously, in a single step. With this new individualization technique we are able to show a reliable improvement in prediction of real world data by individualizing the initial knowledge parameter. We explore three difference strategies for setting the initial individualized knowledge parameters and report that the best strategy is one in which information from multiple skills is used to inform each student’s prior. Using this strategy we achieved lower prediction error in 33 of the 42 problem sets evaluated. The implication of this work is the ability to enhance existing intelligent tutoring systems to more accurately estimate when a student has reached mastery of a skill. Adaptation of instruction based on individualized knowledge and learning speed is discussed as well as open research questions facing those that wish to exploit student and skill information in their user models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atkinson, R.C., Paulson, J.A.: An approach to the psychology of instruction. Psychological Bulletin 78, 49–61 (1972)
Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)
Corbett, A., Bhatnagar, A.: Student Modeling in the ACT Programming Tutor: Adjusting a Procedural Learning Model with Declarative Knowledge. In: Jameson, A., Paris, C., Tasso, C. (eds.) Proceedings of the 6th International Conference on User Modeling, pp. 243–254 (1997)
Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)
Beck, J.E., Chang, K.M.: Identifiability: A Fundamental Problem of Student Modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 137–146. Springer, Heidelberg (2007)
Reye, J.: Student modelling based on belief networks. International Journal of Artificial Intelligence in Education 14, 63–96 (2004)
Chang, K.M., Beck, J.E., Mostow, J., Corbett, A.: A Bayes Net Toolkit for Student Modeling in Intelligent Tutoring Systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 104–113. Springer, Heidelberg (2006)
Ritter, S., Harris, T., Nixon, T., Dickison, D., Murray, C., Towle, B.: Reducing the knowledge tracing space. In: Proceedings of the 2nd International Conference on Educational Data Mining, Cordoba, Spain, pp. 151–160 (2009)
Draney, K.L., Pirolli, P., Wilson, M.: A measurement model for a complex cognitive skill. In: Nichols, P.D., Chipman, S.F., Brennan, R.L. (eds.) Cognitively diagnostic assessment, pp. 103–125. Erlbaum, Hillsdale (1995)
Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis - A New Alternative to Knowledge Tracing. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education, Brighton, UK, pp. 531–538 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pardos, Z.A., Heffernan, N.T. (2010). Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds) User Modeling, Adaptation, and Personalization. UMAP 2010. Lecture Notes in Computer Science, vol 6075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13470-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-13470-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13469-2
Online ISBN: 978-3-642-13470-8
eBook Packages: Computer ScienceComputer Science (R0)