Skip to main content

A Multi-Agent System to Assist with Property Valuation Using Heterogeneous Ensembles of Fuzzy Models

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2010)

Abstract

The multi-agent system for real estate appraisals MAREA was extended to include aggregating agents, which are equipped with heuristic optimization algorithms and can create heterogeneous ensemble models, was presented in the paper. The major part of the study was devoted to investigate the predictive accuracy of heterogeneous ensembles comprising fuzzy models and to compare them with homogenous bagging ensembles. Six optimization heuristics including genetic, tabu search, simulated annealing, minimum average and random algorithms were implemented and applied to obtain the best ensembles for different number of fuzzy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá-Fdez, J., et al.: KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. Alonso, E., d’Inverno, M., Kudenko, D., Luck, M., Noble, J.: Learning in multi-agent systems. Knowledge Engineering Review 16(3), 277–284 (2001)

    Google Scholar 

  3. Avnimelech, R., Intrator, N.: Boosting regression estimators. Neural Computation 11, 491–513 (1999)

    Google Scholar 

  4. Bertoni, A., Campadelli, P., Parodi, M.: A boosting algorithm for regression. In: Proc. Int. Conference on Artificial Neural Networks, pp. 343–348 (1997)

    Google Scholar 

  5. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper. EXP 3(3), 6–19 (2003)

    Google Scholar 

  6. Büchlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.M., Wang, N.Y., Pan, J.S.: Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Systems with Applications 36, 11070–11076 (2009)

    Article  Google Scholar 

  8. Cheng, C.H., Chang, R.J., Yeh, C.A.: Entropy-based and trapezoidal function-based fuzzy time series approach for forecasting IT project cost. Technological Forecasting and Social Change 73, 524–542 (2006)

    Article  Google Scholar 

  9. Drucker, H.: Improving regressors using boosting techniques. In: Proc. 14th Int. Conf. on Machine Learning, pp. 107–115. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  10. Duffy, N., Helmbold, D.P.: Leveraging for regression. In: Proceedings of the 13th Conference on Computational Learning Theory, pp. 208–219 (2000)

    Google Scholar 

  11. Gencay, R., Qi, M.: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks 12, 726–734 (2001)

    Article  Google Scholar 

  12. Glover, F.: Tabu Search — Part I. ORSA Journal on Computing 1(3), 190–206 (1989)

    MATH  Google Scholar 

  13. Glover, F.: Tabu Search — Part II. ORSA Journal on Computing 2(1), 4–32 (1990)

    MATH  Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  15. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  16. Hashem, S.: Optimal linear combinations of neural networks. Neural Networks 10(4), 599–614 (1997)

    Article  Google Scholar 

  17. Jilani, T.A., Burney, S.M.A.: A refined fuzzy time series model for stock market forecasting. Physica A 387, 2857–2862 (2008)

    Article  Google Scholar 

  18. Kégl, B.: Robust regression by boosting the median. In: Proc. of the 16th Conference on Computational Learning Theory, pp. 258–272 (2003)

    Google Scholar 

  19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  20. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Inf. Proc. Systems, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  21. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Google Scholar 

  22. Kudenko, D., Kazakov, D., Alonso, E.: Machine Learning for Agents and Multi-Agent Systems. In: Plekhanova, V. (ed.) Intelligent Agent Software Engineering. Idea Group Publishing, USA (2002)

    Google Scholar 

  23. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Concept of a Multi-agent System for Assisting in Real Estate Appraisals. In: Håkansson, A., et al. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 50–59. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)

    Google Scholar 

  25. Mannor, S., Shamma, J.S.: Multi-agent learning for engineers. Artificial Intelligence 171(7), 417–422 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  27. Misevičius, A., Blažauskas, T., Blonskis, J., Smolinskas, J.: An Overview Of Some Heuristic Algorithms For Combinatorial Optimization Problems. Informacinės Technologijos ir Valdymas 30(1), 21–31 (2004)

    Google Scholar 

  28. Opitz, D., Shavlik, J.W.: Actively searching for an effective neural network ensemble. Connection Science 8(3-4), 337–353 (1996)

    Article  Google Scholar 

  29. Panait, L., Luke, S.: Cooperative Multi-Agent Learning: The State of the Art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

    Article  Google Scholar 

  30. Rardin, R.L., Uzsoy, R.: Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial. Journal of Heuristics 7(3), 261–304 (2001)

    Article  MATH  Google Scholar 

  31. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robotics 8(3), 345–383 (2000)

    Article  Google Scholar 

  32. Triadaphillou, S., et al.: Fermentation process tracking through enhanced spectral calibration modelling. Biotechnology and Bioengineering 97, 554–567 (2007)

    Article  Google Scholar 

  33. Weise, T.: Global Optimization Algorithms - Theory and Application. E-book (2009), http://www.it-weise.de/

  34. Zemel, R.S., Pitassi, T.: A gradient based boosting algorithm for regression problems. Adv. in Neural Inf. Processing Systems 13, 696–702 (2001)

    Google Scholar 

  35. Zhang, J.: Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks 12, 927–938 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graczyk, M., Lasota, T., Telec, Z., Trawiński, B. (2010). A Multi-Agent System to Assist with Property Valuation Using Heterogeneous Ensembles of Fuzzy Models. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13480-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13480-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13479-1

  • Online ISBN: 978-3-642-13480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics