Abstract
The multi-agent system for real estate appraisals MAREA was extended to include aggregating agents, which are equipped with heuristic optimization algorithms and can create heterogeneous ensemble models, was presented in the paper. The major part of the study was devoted to investigate the predictive accuracy of heterogeneous ensembles comprising fuzzy models and to compare them with homogenous bagging ensembles. Six optimization heuristics including genetic, tabu search, simulated annealing, minimum average and random algorithms were implemented and applied to obtain the best ensembles for different number of fuzzy models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcalá-Fdez, J., et al.: KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3), 307–318 (2009)
Alonso, E., d’Inverno, M., Kudenko, D., Luck, M., Noble, J.: Learning in multi-agent systems. Knowledge Engineering Review 16(3), 277–284 (2001)
Avnimelech, R., Intrator, N.: Boosting regression estimators. Neural Computation 11, 491–513 (1999)
Bertoni, A., Campadelli, P., Parodi, M.: A boosting algorithm for regression. In: Proc. Int. Conference on Artificial Neural Networks, pp. 343–348 (1997)
Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper. EXP 3(3), 6–19 (2003)
Büchlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)
Chen, S.M., Wang, N.Y., Pan, J.S.: Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Systems with Applications 36, 11070–11076 (2009)
Cheng, C.H., Chang, R.J., Yeh, C.A.: Entropy-based and trapezoidal function-based fuzzy time series approach for forecasting IT project cost. Technological Forecasting and Social Change 73, 524–542 (2006)
Drucker, H.: Improving regressors using boosting techniques. In: Proc. 14th Int. Conf. on Machine Learning, pp. 107–115. Morgan Kaufmann, San Francisco (1997)
Duffy, N., Helmbold, D.P.: Leveraging for regression. In: Proceedings of the 13th Conference on Computational Learning Theory, pp. 208–219 (2000)
Gencay, R., Qi, M.: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks 12, 726–734 (2001)
Glover, F.: Tabu Search — Part I. ORSA Journal on Computing 1(3), 190–206 (1989)
Glover, F.: Tabu Search — Part II. ORSA Journal on Computing 2(1), 4–32 (1990)
Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)
Hashem, S.: Optimal linear combinations of neural networks. Neural Networks 10(4), 599–614 (1997)
Jilani, T.A., Burney, S.M.A.: A refined fuzzy time series model for stock market forecasting. Physica A 387, 2857–2862 (2008)
Kégl, B.: Robust regression by boosting the median. In: Proc. of the 16th Conference on Computational Learning Theory, pp. 258–272 (2003)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Inf. Proc. Systems, pp. 231–238. MIT Press, Cambridge (1995)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Kudenko, D., Kazakov, D., Alonso, E.: Machine Learning for Agents and Multi-Agent Systems. In: Plekhanova, V. (ed.) Intelligent Agent Software Engineering. Idea Group Publishing, USA (2002)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Concept of a Multi-agent System for Assisting in Real Estate Appraisals. In: Håkansson, A., et al. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 50–59. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)
Mannor, S., Shamma, J.S.: Multi-agent learning for engineers. Artificial Intelligence 171(7), 417–422 (2007)
Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Heidelberg (2004)
Misevičius, A., Blažauskas, T., Blonskis, J., Smolinskas, J.: An Overview Of Some Heuristic Algorithms For Combinatorial Optimization Problems. Informacinės Technologijos ir Valdymas 30(1), 21–31 (2004)
Opitz, D., Shavlik, J.W.: Actively searching for an effective neural network ensemble. Connection Science 8(3-4), 337–353 (1996)
Panait, L., Luke, S.: Cooperative Multi-Agent Learning: The State of the Art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)
Rardin, R.L., Uzsoy, R.: Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial. Journal of Heuristics 7(3), 261–304 (2001)
Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robotics 8(3), 345–383 (2000)
Triadaphillou, S., et al.: Fermentation process tracking through enhanced spectral calibration modelling. Biotechnology and Bioengineering 97, 554–567 (2007)
Weise, T.: Global Optimization Algorithms - Theory and Application. E-book (2009), http://www.it-weise.de/
Zemel, R.S., Pitassi, T.: A gradient based boosting algorithm for regression problems. Adv. in Neural Inf. Processing Systems 13, 696–702 (2001)
Zhang, J.: Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks 12, 927–938 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graczyk, M., Lasota, T., Telec, Z., Trawiński, B. (2010). A Multi-Agent System to Assist with Property Valuation Using Heterogeneous Ensembles of Fuzzy Models. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13480-7_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-13480-7_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13479-1
Online ISBN: 978-3-642-13480-7
eBook Packages: Computer ScienceComputer Science (R0)