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Abstract. We address in this paper a new computational biology problem that aims at understand-
ing a mechanism that could potentially be used to genetically manipulate natural insect populations
infected by inherited, intra-cellular parasitic bacteria. In this problem, that we denote by Mod/Resc
Parsimony Inference, we are given a boolean matrix and the goal is to find two other boolean
matrices with a minimum number of columns such that an appropriately defined operation on these
matrices gives back the input. We show that this is formally equivalent to the Bipartite Biclique
Edge Cover problem and derive some complexity results for our problem using this equivalence. We
provide a new, fixed-parameter tractability approach for solving both that slightly improves upon a
previously published algorithm for the Bipartite Biclique Edge Cover. Finally, we present experi-
mental results where we applied some of our techniques to a real-life data set.
Keywords: Computational biology, biclique edge covering, bipartite graph, boolean matrix, NP-
completeness, graph theory, fixed-parameter tractability, kernelization.

1 Introduction

Wolbachia is a genus of inherited, intra-cellular bacteria that infect many arthropod species, includ-
ing a significant proportion of insects. The bacterium was first identified in 1924 by M. Hertig and
S. B. Wolbach in Culex pipiens, a species of mosquito. Wolbachia spreads by altering the reproduc-
tive capabilities of its hosts [6]. One of these alterations consists in inducing so-called cytoplasmic
incompatibility [7]. This phenomenon, in its simplest expression, results in the death of embryos
produced in crosses between males carrying the infection and uninfected females. A more complex
pattern is the death of embryos seen in crosses between males and females carrying different Wol-
bachia strains. The study of Wolbachia and cytoplasmic incompatibility is of interest due to the
high incidence of such infections, amongst others in human disease vectors such as mosquitoes,
where cytoplasmic incompatibility could potentially be used as a driver mechanism for the genetic
manipulation of natural populations.

The molecular mechanisms underlying cytoplasmic incompatibility are currently unknown, but
the observations are consistent with a “toxin / antitoxin” model [16]. According to this model, the
bacteria present in males modify the sperm (the so-called modification, or mod factor) by depositing
a “toxin” during its maturation. Bacteria present in females, on the other hand, deposit an antitoxin
(rescue, or resc factor) in the eggs, so that offsprings of infected females can develop normally. The
simple compatibility patterns seen in several insect hosts species [1–3] has lead to the general view
that cytoplasmic incompatibility relies on a single pair of mod / resc genes. However, more complex
patterns, such as those seen in Table 1 of the mosquito Culex pipiens [5], suggest that this conclusion
cannot be generalized. The aim of this paper is to provide a first model and algorithm to determine
the minimum number of mod and resc genes required to explain a compatibility dataset for a given
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insect host. Such an algorithm will have an important impact on the understanding of the genetic
architecture of cytoplasmic incompatibility. Beyond Wolbachia, the method proposed here can be
applied to any parasitic bacteria inducing cytoplasmic incompatibility.

Fig. 1. The Culex pipiens dataset. Rows represent females and columns males.

Let us now propose a formal description of this problem. Let the compatibility matrix C be an
n-by-n matrix describing the observed cytoplasmic compatibility relationships among n Wolbachia
strains, with females in rows and males in columns. For the Culex pipiens dataset, the content of
the C matrix is directly given by Table 1. For each entry Ci,j of this matrix, a value of 1 indicates
that the cross between the i’th female and j’th male is incompatible, while a value of 0 indicates
it is compatible. No intermediate levels of incompatibility are observed in Culex pipiens, so that
such a discrete code (0 or 1) is sufficient to describe the data. Let the mod matrix M be an n-by-k
matrix, with n strains and k mod genes. For each Mi,j entry, a 0 indicates that strain i does not
carry gene j, and a 1 indicates that it does carry this gene. Similarly, the rescue matrix R is an
n-by-k matrix, with n strains and k resc genes, where Ri,j entries indicate whether strain i carries
gene j. A cross between female i and male j is compatible only if strain i carries at least all the
rescue genes matching the mod genes present in strain j. Using this rule, one can assess whether
an (M,R) pair is a solution to the C matrix, that is, to the observed data.

We can easily find non-parsimonious solutions to this problem, that is, large M and R matrices
that are solutions to C, as will be proven in the next section. However, solutions may also exist with
fewer mod and resc genes. We are interested in the minimum number of genes for which solutions
to C exist, and the set of solutions for this minimum number. This problem can be summarized as
follows: Let C (compatibility) be a boolean n-by-n matrix. A pair of n-by-k boolean matrices M
(mod) and R (resc) is called a solution to C if, for any row j in R and row i in M , Ci,j = 0 if and
only if Rj,ℓ ≥ Mi,ℓ holds for all ℓ, 1 ≤ ℓ ≤ k. This appropriately models the fact stated above that,
for any cross to be compatible, the female must carry at least all the rescue genes matching the
mod genes present in the male. For a given matrix C, we are interested in the minimum value of k
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for which solutions to C exist, and the set of solutions for this minimum k. We refer to this problem
as the Mod/Resc Parsimony Inference problem (see also Section 2). Since in come cases, data
(on females or males) may be missing, the compatibility matrix C has dimension n-by-m for n not
necessarily equal to m. We will consider this more general situation in what follows.

In this paper, we present theMod/Resc Parsimony Inference problem and prove it is equiv-
alent to a well-studied graph-theoretic problem known in the literature by the name of Bipartite
Biclique Edge Cover. In this problem, we are given a bipartite graph, and we want to cover its
edges with a minimum number of complete bipartite subgraphs (bicliques). This problem is known
to be NP-complete, and thus Mod/Resc Parsimony Inference turns out to be NP-complete
as well. In Section 4, we investigate a previous fixed-parameter tractability approach [8] for solving
the Bipartite Biclique Edge Cover problem and improve its algorithm. In addition, we show
a reduction between this problem and the Clique Edge Cover problem. Finally, in Section 5, we
present experimental results where we applied some of these techniques to the Culex pipiens data
set presented in Table 1. This provided a surprising finding from a biological point of view.

2 Problem Definition and Notation

In this section, we briefly review some notation and terminology that will be used throughout the
paper. We also give a precise mathematical definition of the Mod/Resc Parsimony Inference
problem we study. For this, we first need to define a basic operation between two boolean vectors:

Definition 1. The ⊗ vectors multiplication is an operation between two boolean vectors U, V ∈
{0, 1}k such that :

U ⊗ V :=

{

1 : U [i] > V [i] for some i ∈ {1, . . . , k}
0 : otherwise

In other words, the result of the ⊗ multiplication is 0 if, for all corresponding locations, the value
in the second vector is not less than in the first.

The reader should note that this operation is not symmetric. For example, if U := (0, 1, 1, 0)
and V := (1, 1, 1, 0), then U ⊗ V = 0, while V ⊗U = 1. We next generalize the ⊗ multiplication to
boolean matrices. This follows easily from the observation that the boolean vectors U, V ∈ {0, 1}k

may be seen as matrices of dimension 1-by-k. We thus use the same symbol ⊗ to denote the
operation applied to matrices.

Definition 2. The ⊗ row-by-row matrix multiplication is a function {0, 1}n×k × {0, 1}m×k →
{0, 1}n×m such that C = M ⊗ R iff Ci,j = Mi ⊗ Rj for all i ∈ {1, . . . , n} and j ∈ {1, . . . m}.
(Here Mi and Rj respectively denote the i’th and j’th row of M and R.)

Definition 3. In the Mod/Resc Parsimony Inference problem, the input is a boolean matrix
C ∈ {0, 1}n×m, and the goal is to find two boolean matrices M ∈ {0, 1}n×k and R ∈ {0, 1}m×k such
that Ci,j = M ⊗R and with k minimal.

We first need to prove there is always a correct solution to the Mod/Resc Inference Prob-
lem. Here we show that there is always a solution for as many mod and resc genes as the minimum
between the number of male and female strains in the dataset.
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Lemma 1. The Mod/Resc Parsimony Inference problem always has a solution.

Proof. A satisfying output for the Mod/Resc Parsimony Inference problem always exists for
any possible C of size n-by-m. For instance, let M be of size n-by-n and equal to the identity

matrix, and let R be of size m-by-n and such that R = C
T
. This solution is correct since the only

1-value in an arbitrary row ri of the matrix M is at location Mii. Thus, the only situation where
Cij = 1 is when Rji = 0, which is the case by construction. ⊓⊔

We will be using some standard graph-theoretic terminology and notation. We use G, G′, and
so forth to denote graphs in general, where V (G) denotes the vertex set of a graph G, and E(G) its
edge-set. By a subgraph of G, we mean a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For a
bipartite graph G, i.e. a graph whose vertex-set can be partitioned into two classes with no edges
occurring between vertices of the same class, we use V1(G) and V2(G) to denote the two vertex
classes of G. A complete bipartite graph (biclique) is a bipartite graph G with E(G) := {{u, v} :
u ∈ V1(G), v ∈ V2(G)}. We will sometimes use B, B1, and so forth to denote bicliques.

3 Equivalence to Bipartite Biclique Edge Cover

In this section, we show that the Mod/Resc Parsimony Inference problem is equivalent to
a classical and well-studied graph theoretical problem known in the literature as the Bipartite
Graph Biclique Edge Cover problem. Using this equivalence, we first derive the complexity
status of Mod/Resc Parsimony Inference, and later devise FPT algorithms for this problem.
We begin with a formal definition of the Bipartite Graph Biclique Edge Cover problem.

Definition 4. In the Bipartite Biclique Edge Cover Problem problem, the input is a bi-
partite graph G, and the goal is to find the minimum number of biclique subgraphs B1, . . . , Bk of G
such that E(G) :=

⋃

ℓE(Bℓ).

Given a bipartite graph G with V1(G) := {u1, . . . , un} and V2(G) := {u1, . . . , um}, the bi-
adjacency matrix of G is a boolean matrix A(G) ∈ {0, 1}n×m defined by A(G)i,j := 1 ⇐⇒
{ui, vj} ∈ E(G). In this way, every boolean matrix C corresponds to a bipartite graph, and vice
versa.

Theorem 1. Let C be a boolean matrix of size n×m. Then there are two matrices M ∈ {0, 1}n×k

and R ∈ {0, 1}m×k with C = M ⊗ R iff the bipartite graph G with A(G) := C has a biclique edge
cover with k bicliques.

Proof. (⇐=) Let G be the bipartite graph with the bi-adjacency matrix C, and suppose G has
biclique edge cover B1, B2, . . . , Bk. We construct two boolean matrices M and R as follows: Let
V1(G) := {u1, . . . , un} and V2(G) := {v1, . . . , vm}. We define:

1. Mi,ℓ = 1 ⇐⇒ ui ∈ V1(Bℓ).
2. Rj,ℓ = 0 ⇐⇒ vj ∈ V2(Bℓ).

An illustration of this construction is given in Figure 2.
We argue that C = M ⊗ R. Consider an arbitrary location Ci,j = 1. By definition we have

{ui, vj} ∈ E(G). Since the bicliques B1, . . . , Bk cover all edges of G, we know that there is some
ℓ, ℓ ∈ {1, . . . , k}, with ui ∈ V1(Bℓ) and vj ∈ V2(Bℓ). By construction we know that Mi,ℓ = 1 and
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Fig. 2. Reduction illustrated.

Rj,ℓ = 0, and so Mi⊗Rj = 1, which means that the entry at row i and column j in M ⊗C is equal
to 1. On the other hand, if Cij = 0, then {ui, vj} /∈ E(G), and thus there is no biclique Bℓ with
ui ∈ V1(Bℓ) and vj ∈ V2(Bℓ). As a result, for all ℓ ∈ {1, . . . , k}, if Mi,ℓ = 1 then Ri,ℓ = 1 as well,
which means that the result of the ⊗ multiplication between the i’th row in M and the j’th row in
R will be equal to 0.

(=⇒) Assume there are two matrices M ∈ {0, 1}n×k and R ∈ {0, 1}m×k with C = M ⊗ R.
Construct k subgraphs B1, . . . , Bk of G, where the ℓ’th subgraph is defined as follows:

1. ui ∈ V1(Bℓ) ⇐⇒ Mi,ℓ = 1.
2. vj ∈ V2(Bℓ) ⇐⇒ Rj,ℓ = 0.
3. {ui, vj} ∈ E(Bℓ) ⇐⇒ {vi, vj} ∈ E(G).

We first argue that each of the subgraphs B1, . . . , Bk is a biclique. Consider an arbitrary sub-
graph Bℓ, and an arbitrary pair of vertices ui ∈ V1(Bℓ) and vjV2(Bℓ). By construction, it follows that
Mi,ℓ = 1 and Ri,ℓ = 0. As a result, it must be that Ci,j = 1, which means that {ui, vj} ∈ E(G). Next,
we argue that

⋃

ℓE(Bℓ) = E(G). Consider an arbitrary edge {ui, vj} ∈ E(G). Since C = A(G), we
have Ci,j = 1. Furthermore, since M ⊗R = C, there must be some ℓ ∈ {1, . . . , k} with Mi,ℓ > Rj,ℓ.
However, this is exactly the condition for having ui and vj in the biclique subgraph Bℓ. It follows
that indeed

⋃

ℓE(Bℓ) = E(G), and thus the theorem is proved. ⊓⊔

Due to the equivalence between Mod/Resc Parsimony Inference and Bipartite Biclique
Edge Cover, we can infer from known complexity results regarding Bipartite Biclique Edge
Cover the complexity of our problem. First, since Bipartite Biclique Edge Cover is well-
known to be NP-complete [15], it follows that Mod/Resc Parsimony Inference is NP-complete
as well. Furthermore, Gruber and Holzer [11] recently showed that Bipartite Biclique Edge
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Cover problem cannot be approximated within a factor of n1/3−ε unless P = NP where n is
the total number of vertices. Since the reduction given in Theorem 1 is clearly an approximate
preserving reduction, we can deduce the following:

Theorem 2. Mod/Resc Parsimony Inference is NP-complete, and furthermore, for all ε > 0,
the problem cannot be approximated within a factor of (n+m)1/3−ε unless P = NP.

4 Fixed-parameter tractability

In this section, we explore a parameterized complexity approach [4, 9, 14] for the Mod/Resc Par-
simony Inference problem. Due to the equivalence shown in the previous section, we focus for
convenience reasons on Bipartite Biclique Edge Cover. In parameterized complexity, problem
instances are appended with an additional parameter, usually denoted by k, and the goal is to find
an algorithm for the given problem which runs in time f(k) · nO(1), where f is an arbitrary com-
putable function. In our context, our goal is to determine whether a given input bipartite graph G
with n vertices has a biclique edge cover of size k in time f(k) · nO(1).

4.1 The kernelization

Fleischner et al. [8] studied the Bipartite Biclique Edge Cover problem in the context of
parameterized complexity. The main result in their paper is to provide a kernel for the problem
based on the techniques given by Gramm et al. [10] for the similar Clique Edge Cover problem.
Kernelization is a central technique in parameterized complexity which is best described as a
polynomial-time transformation that converts instances of arbitrary size to instances of a size
bounded by the problem parameter (usually of the same problem), while mapping “yes”-instances
to “yes”-instances, and “no”-instances to “no”-instances. More precisely, a kernelization algorithm
A for a parameterized problem (language) Π is a polynomial-time algorithm such that there exists
some computable function f , such that, given an instance (I, k) of Π, A produces an instance
(I ′, k′) of Π with:

– |I ′|+ k′ ≤ f(k), and
– (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π.

We refer the reader to e.g. [12, 14] for more information on kernelization.
A typical kernelization algorithm works with reduction rules, which transform a given instance

to a slightly smaller equivalent instance in polynomial time. The typical argument used when work-
ing with reduction rules is that once none of these can be applied, the resultant instance has size
bounded by a function of the parameter. For the Bipartite Biclique Edge Cover, two kernel-
ization rules have been applied by Fleischner et al. [8]:

RULE 1: If G has a vertex with no neighbors, remove this vertex without changing the parameter.
RULE 2: If G has two vertices with identical neighbors, remove one of these vertices without chang-
ing the parameter.

Lemma 2 ([8]). Applying rules 1 and 2 of above exhaustively gives a kernelization algorithm for
Bipartite Biclique Edge Cover that runs in O(n3) time, and transforms an instance (G, k)
to an equivalent instance (G′, k) with |V (G′)| ≤ 2k and |E(G′)| ≤ 22k.
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We add two additional rules, which will be necessary for further interesting properties.
RULE 3: If there is a vertex v with exactly one neighbor u in G, then remove both v and u, and
decrease the parameter by one.

Lemma 3. Rule 3 is correct.

Proof. Assume a biclique cover of size k of the graph, and assume that vertex v is a member of
some of the bicliques in this cover. By definition, at least one of the bicliques covers the edge {u, v}.
Since this is the only edge adjacent to v, the bicliques that cover {u, v} include only vertex u among
the vertices in its bipartite vertex class. If the bicliques do not cover all the edges of u, add them
to each of the bicliques. ⊓⊔

RULE 4: If there is a vertex v in G which is adjacent to all vertices in the opposite bipartition class
of G, then remove v without decreasing the parameter.

Lemma 4. Rule 4 is correct.

Proof. After applying rule 3 above, each remaining vertex in the graph has at least two neighbors.
Assume a biclique cover of size k of all the edges except those adjacent to vertex v. Assume w.l.o.g.
that v ∈ V1(G). Since each vertex u ∈ V2(G) has degree at least 2, it is adjacent to an edge which is
covered by the biclique cover. It therefore belongs to some biclique in this cover. For each biclique
in the cover, add now vertex v to its set of vertices. Since v is adjacent to all the vertices of V2(G),
each changed component is a correct biclique and the new solution covers all the edges, including
those of vertex v, and is of same size. ⊓⊔

Regarding the time complexity of the new rules we introduced, it is clear that once a vertex has
been found in which a rule should be applied, applying each rule takes O(n) time. Thus, including
the time necessary to find such a vertex, the time required for each rule is O(n). Since one can
apply the reduction rules at most O(n) time, the total time required for our extended kernelization
remains O(n3). We remark that although the new rules do not change the kernelization size, which
remains 2k vertices in a solution of size k, they will be useful in the following section.

4.2 Bipartite Biclique Edge Cover and Clique Edge Cover

In this section, we show the connection between the Bipartite Biclique Edge Cover and the
Clique Edge Cover problems. We show that in the context of fixed-parameter tractability, we
can easily translate our problem to the classical clique covering problem and then use it for a
solution to our problem. For instance, it gives another way for the kernelization of the problem and
can provide interesting heuristics, mentioned in [10].

Given a kernelized bipartite graph G′ as an instance to the Bipartite Biclique Edge Cover
problem, we transform G′ into a (non-bipartite) graph G′′ defined by V (G′′) := V (G′) and E(G′′) :=
E(G′) ∪ {{u, v} : u, v ∈ V1(G

′) or u, v ∈ V2(G
′)}.

Theorem 3. The edges of G′ can be covered with k cliques iff the edges of G′′ can be covered with
k + 2 cliques.

Proof. Suppose B1, . . . , Bk is a biclique edge cover of G′. Then each V (Bi), i ∈ {1, . . . , k}, induces
a clique in G′′. Furthermore, the only remaining edges which are not covered in G′′ are the ones
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between vertices in V1(G
′) and V2(G

′), which can be covered by the two cliques induced by these
vertex sets in G′′. Altogether this gives us k + 2 cliques that cover all edges in G′′. Conversely,
take a clique edge cover K1, . . . ,Kc of G′′. Due to the fourth kernelization rule, we know that
there is no vertex in V1(G

′) which is connected to all vertices in V2(G
′), and vice-versa, in both

G′ and G′′. It follows that there must be at least two cliques in {K1, . . . ,Kc}, say K1 and K2,
with V (K1) ⊆ V1(G

′) and V (K2) ⊆ V2(G
′). Thus, there is a subset of the cliques in {K3, . . . ,Kc}

which have vertices in both partition classes of G′, and which cover all the edges in G′. Taking the
corresponding bicliques in G′, and adding duplicated bicliques if necessary, gives us k bicliques that
cover all edges in G′. ⊓⊔

4.3 Algorithms

After the kernelization algorithm is applied, the next step is usually to solve the problem using
brute-force. This is what is done in [8]. However, the time complexity given there is inaccurate, and

the parametric-dependent time bound of their algorithm is O(k4
k

23k) = O(22
2k lg k+3k) instead of

the O(22k
2+3k) bound stated in their paper. Furthermore, the algorithm they describe is initially

given for the related Bipartite Biclique Edge Partition problem (where each edge is allowed
to appear exactly once in a biclique), and the adaptation of such algorithm to the Bipartite
Biclique Edge Cover problem is left vague and imprecise. Here, we suggest two possible brute-
force procedures for the Bipartite Biclique Edge Cover problem, each of which outperforms
the algorithm of [8] in the worst-case. We assume throughout that we are working with a kernelized
instance obtained by applying the algorithm described in Section 4.1, i.e. a pair (G′, k) where G′

is a bipartite graph with at most 2k vertices (and consequently at most 4k edges).

The first brute-force algorithm: For each k′ ≤ k, try all possible partitions of the edge-set E(G′) of
G′ into k′ subsets. For each such partition Π = {E1, . . . , Ek′}, check whether each of the subgraphs
G′[E1], . . . , G

′[Ek′ ] is a biclique, where G′[Ei] is the subgraph of G induced by Ei. If yes, report
G′[E1], . . . , G

′[Ek′ ] as a solution. If some G′[Ei] is not a biclique, check whether edges in E(G′) \
E(G′

i) can be added to E[G′

i] in order to make the graph a biclique. Continue with the next partition
if some graph in G′[E1], . . . , G

′[Ek′ ] cannot be appended in this way in order to get a biclique, and
otherwise report the solution found. Finally, if the above procedure fails for all partitions of E(G′)
into k′ ≤ k subsets, report that G′ does not have a biclique edge cover of size k.

Lemma 5. The above algorithm correctly determines whether G′ has a bipartite biclique edge cover

of size k in time 22
2k lg k+2k+lg k

k! .

Proof. Correctness of the above algorithm is immediate in case a solution is found. To see that
the algorithm is also correct when it reports that no solution can be found, observe that for any
biclique edge cover B1, . . . , Bk of G, the set {E1, . . . , Ek} with Ei := E(G′

i) \
⋃

j<iE(G′

j) defines a
partition of E(G′) (with some of the Ei’s possibly empty), and given this partition, the algorithm
above would find the biclique edge cover of G′. Correctness of the algorithm thus follows.

Regarding the time complexity, the time needed for appending edges to each subgraph is at most
O(|(V (G′))2|) = O(22k), and thus a total of O(22kk) = O(22k+lg k) time is required for the entire
partition. The number of possible partitions of E(G′) into k disjoint set is the Stirling number of the

second kind S(22k, k), which has been shown in [13] to be asymptotically equal to O(k
4k

k! = 22
2k lg k

k! ).

Thus, the total complexity of the algorithm is 22
2k lg k+2k+lgk

k! . ⊓⊔
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The second brute-force algorithm: We generate the set K(G′) of all possible inclusion-wise maximal
bicliques in G′, and try all possible k-subsets of K(G′) to see whether one covers all edges in
G′. Correctness of the algorithm is immediate since one can always restrict oneself to using only
inclusion-wise maximal bicliques in a biclique edge cover. To generate all maximal bicliques, we
first transform G′ into the graph G′′ given in Theorem 3. Thus, every inclusion-wise maximal
biclique in G′ is an inclusion-wise maximal clique in G′′. We then use the algorithm of [18] on the
complement graph G′′ of G′′, i.e. the graph defined by V (G′′) := V (G′′) and E(G′′) := {{u, v} :
u, v ∈ V (G′′), u 6= v, and {u, v} /∈ E(G′′)}.

Theorem 4. The Bipartite Biclique Edge Cover problem can be solved in O(f(k)+n3) time,

where f(k) := 2k2
k−1+3k.

Proof. Given a bipartite graph G as an instance to Bipartite Biclique Edge Cover, we first
apply the kernelization algorithm to obtain an equivalent graph G′ with 2k vertices, and then apply
the brute-force algorithm described above to determine whether G′ has a biclique edge cover of size
k. Correctness of this algorithm follows directly from Section 4.1 and the correctness of the brute-
force procedure. To analyze the time complexity of this algorithm, we first note that Prisner showed
that any bipartite graph on n vertices has at most 2n/2 inclusion-wise maximal bicliques [18]. This

implies that |K(G′)| ≤ 22
k−1

. The algorithm of [17] runs in O(|V (G′)||E(G′)||K(G′)|) time, which

is O(2k22k22
k−1

) = O(22
k−1+3k). Finally, the total number of k-subsets of K(G′) is O(2k2

k−1

), and
checking whether each of these subsets covers the edges of G′ requires O(|V (G′)||E(G′)|) = O(23k)

time. Thus, the total time complexity of the entire algorithm is O(22
k−1+3k + 2k2

k−1+3k + n3) =

O(2k2
k−1+3k + n3). ⊓⊔

It is worthwhile mentioning that some particular bipartite graphs have a number of inclusion-
wise maximal bicliques, which is polynomial in the number of their vertices. For these types of
bipartite graphs, we could improve on the worst-case analysis given in the theorem above. For
instance, a bipartite chordal graph G has at most |E(G)| inclusion-wise maximal bicliques [18]. A
bipartite graph with n vertices and no induced cocktail-party graph of order ℓ has at most n2(ℓ−1)

inclusion-wise maximal bicliques [17]. The cocktail party graph of order ℓ is the graph with nodes
consisting of two rows of paired nodes in which all nodes but the paired ones are connected with
a graph edge (for a full definition, see [17]). Observing that the algorithm in Section 4.1 preserves
cordiality and does not introduce any new cocktail-party induced subgraphs, we obtain the following
corollary:

Corollary 1. The Bipartite Biclique Edge Cover problem can be solved in O(22k
2+3k + n3)

time when restricted to chordal bipartite graphs, and in O(22k
2(ℓ−1)+3k + n3) time when restricted

to bipartite graphs with no induced cocktail-party graphs of order ℓ.

5 Experimental Results

We performed experiments of the parameterized algorithms on the Culex pipiens dataset, given in
Table 1. We implemented the algorithms in the C++ programming language, with source code of
approximately 2500 lines.

The main difficulty in practice is to find the minimal size k. Different approaches could be used.
One would proceed by first checking if there is no solution of small sizes since this is easy to check
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using the FPT approach, and then increasing the size until reaching a smallest size k for which one
solution exists. Another would proceed by using different fast and efficient heuristics to discover
a solution of a given size k′ that in general will be greater than the optimal size k sought. Then
applying dichotomy (the optimal solution is between 1 and k′−1), the minimal size could be found
using the FPT approach for the middle value between 1 and k′ − 1, and so on. The source code
and the results can be viewed on the webpage http://lbbe.univ-lyon1.fr/-Nor-Igor-.html.

The result obtained on the Culex pipiens dataset indicates that 8 pairs of mod/resc genes are
required to explain the dataset. This appear to be in sharp contrast to more simple patterns seen in
other host species [2, 3, 1] that had led to the general belief that cytoplasmic incompatibility can be
explained with a single pair of mod / resc genes. In biological terms, this result means that contrary
to earlier beliefs, the number of genetic determinants of cytoplasmic incompatibility present in a
single Wolbachia strain can be large, consistent with the view that it might involve repeated genetic
elements such as transposable elements or phages.
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6 Appendix

Fig. 3. The Culex pipiens solution.
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