Skip to main content

Solving Partial Differential Equation via Stochastic Process

  • Conference paper
Unconventional Computation (UC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6079))

Included in the following conference series:

  • 814 Accesses

Abstract

We investigate a theoretical framework to solve partial differential equations by using stochastic processes, e.g., chemical reaction systems. The framework is based on ‘duality’ concept in stochastic processes, which has been widely studied and used in mathematics and physics. Using the duality concept, a partial differential equation is connected to a stochastic process via a duality function. Without solving the partial differential equation, information about the partial differential equation can be obtained from a solution of the stochastic process. From a viewpoint of unconventional computation, one may say that the stochastic process can solve the partial differential equation. An algebraic method to derive dual processes is explained, and two examples of partial differential equations are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, London (2006)

    MATH  Google Scholar 

  2. Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature (London) 420, 231 (2002)

    Article  Google Scholar 

  3. Gardiner, C.: Stochastic Methods, 4th edn. Springer, Berlin (2004)

    Google Scholar 

  4. Liggett, T.M.: Interacting Particle Systems (Classics in Mathematics). Reprint of the 1985 edition. Springer, Berlin (2005)

    Google Scholar 

  5. Kipnis, C., Marchioro, C., Presutti, E.: Heat Flow in an Exactly Solvable Model. J. Stat. Phys. 27, 65 (1982)

    Article  MathSciNet  Google Scholar 

  6. Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A: Math. Gen. 16, 4275 (1983)

    Article  MathSciNet  Google Scholar 

  7. Shiga, T., Uchiyama, K.: Stationary States and their Stability of the Stepping Stone Model Involving Mutation and Selection. Probab. Th. Rel. Fields 73, 87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schütz, G., Sandow, S.: Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems. Phys. Rev. E 49, 2726 (1994)

    Article  Google Scholar 

  9. Schütz, G.M.: Duality Relations for Asymmetric Exclusion Processes. J. Stat. Phys. 86, 1265 (1997)

    Article  MATH  Google Scholar 

  10. Möhle, M.: The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5, 761 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doering, C.R., Mueller, C., Smereka, P.: Interacting particles the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality. Physica A 325, 243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giardinà, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 033301 (2007)

    Article  Google Scholar 

  13. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and Hidden Symmetries in Interacting Particle Systems. J. Stat. Phys. 135, 25 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ohkubo, J.: Duality in interacting particle systems and boson representation. To appear in J. Stat. Phys., arXiv:0909.5290

    Google Scholar 

  15. Doi, M.: Second quantization representation for classical many particle system. J. Phys. A: Math. Gen. 9, 1465 (1976)

    Article  Google Scholar 

  16. Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9, 1479 (1976)

    Article  Google Scholar 

  17. Peliti, L.: Path integral approach to birth-death processes on a lattice. J. Physique 46, 1469 (1985)

    Article  MathSciNet  Google Scholar 

  18. Täuber, U.C., Howard, M., Vollmayr-Lee, B.P.: Applications of field-theoretic renormalization group methods to reaction-diffusion problems. J. Phys. A: Math. Gen. 38, R79 (2005)

    Article  Google Scholar 

  19. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohkubo, J. (2010). Solving Partial Differential Equation via Stochastic Process. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds) Unconventional Computation. UC 2010. Lecture Notes in Computer Science, vol 6079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13523-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13523-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13522-4

  • Online ISBN: 978-3-642-13523-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics