Abstract
The paper is devoted to the formalization of two elementary but important problems within rough set theory. We mean searching for the minimal requirements of the well-known rough operators – the lower and the upper approximations in an abstract approximation space to retain their natural properties. We also discuss pros and cons of the development of the computer-checked repository for rough set theory based on the comparison of certain rough approximation operators proposed by Anna Gomolińska.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bryniarski, E.: Formal conception of rough sets. Fundamenta Informaticae 27(2-3), 109–136 (1996)
Dahn, B.I.: Robbins algebras are Boolean: A revision of McCune’s computer-generated solution of the Robbins problem. J. of Algebra 208(2), 526–532 (1998)
Gomolińska, A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae 51(1-2), 103–119 (2002)
Grabowski, A.: Basic properties of rough sets and rough membership function. Formalized Mathematics 12(1), 21–28 (2004)
Grabowski, A., Jastrzȩbska, M.: Rough set theory from a math-assistant perspective. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 152–161. Springer, Heidelberg (2007)
Grabowski, A., Schwarzweller, C.: Rough Concept Analysis – theory development in the Mizar system. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 130–144. Springer, Heidelberg (2004)
Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y.Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)
Jiang, B., Qin, K., Pei, Z.: On transitive uncertainty mappings. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 42–49. Springer, Heidelberg (2007)
Liang, X., Li, D.: On rough subgroup of a group. To appear in Formalized Mathematics (2009); MML Id: GROUP_11
Mizar Home Page, http://mizar.org/
Padlewska, B.: Families of sets. Formalized Mathematics 1(1), 147–152 (1990)
Samanta, P., Chakraborty, M.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 127–134. Springer, Heidelberg (2009)
Qin, K., Yang, J., Pei, Z.: Generalized rough sets based on reflexive and transitive relations. Information Sciences 178, 4138–4141 (2008)
Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215. Springer, Heidelberg (2003)
Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)
Zhang, H., Ouyang, Y., Wang, Z.: Note on “Generalized rough sets based on reflexive and transitive relations”. Information Sciences 179, 471–473 (2009)
Zhu, W.: Generalized rough sets based on relations. Information Sciences 177, 4997–5011 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grabowski, A., Jastrzȩbska, M. (2010). A Note on a Formal Approach to Rough Operators. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-13529-3_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13528-6
Online ISBN: 978-3-642-13529-3
eBook Packages: Computer ScienceComputer Science (R0)