Skip to main content

A Note on a Formal Approach to Rough Operators

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6086))

Included in the following conference series:

  • 1524 Accesses

Abstract

The paper is devoted to the formalization of two elementary but important problems within rough set theory. We mean searching for the minimal requirements of the well-known rough operators – the lower and the upper approximations in an abstract approximation space to retain their natural properties. We also discuss pros and cons of the development of the computer-checked repository for rough set theory based on the comparison of certain rough approximation operators proposed by Anna Gomolińska.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bryniarski, E.: Formal conception of rough sets. Fundamenta Informaticae 27(2-3), 109–136 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Dahn, B.I.: Robbins algebras are Boolean: A revision of McCune’s computer-generated solution of the Robbins problem. J. of Algebra 208(2), 526–532 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gomolińska, A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae 51(1-2), 103–119 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Grabowski, A.: Basic properties of rough sets and rough membership function. Formalized Mathematics 12(1), 21–28 (2004)

    Google Scholar 

  5. Grabowski, A., Jastrzȩbska, M.: Rough set theory from a math-assistant perspective. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 152–161. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Grabowski, A., Schwarzweller, C.: Rough Concept Analysis – theory development in the Mizar system. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 130–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y.Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Jiang, B., Qin, K., Pei, Z.: On transitive uncertainty mappings. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 42–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Liang, X., Li, D.: On rough subgroup of a group. To appear in Formalized Mathematics (2009); MML Id: GROUP_11

    Google Scholar 

  10. Mizar Home Page, http://mizar.org/

  11. Padlewska, B.: Families of sets. Formalized Mathematics 1(1), 147–152 (1990)

    Google Scholar 

  12. Samanta, P., Chakraborty, M.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 127–134. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Qin, K., Yang, J., Pei, Z.: Generalized rough sets based on reflexive and transitive relations. Information Sciences 178, 4138–4141 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)

    Google Scholar 

  16. Zhang, H., Ouyang, Y., Wang, Z.: Note on “Generalized rough sets based on reflexive and transitive relations”. Information Sciences 179, 471–473 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu, W.: Generalized rough sets based on relations. Information Sciences 177, 4997–5011 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabowski, A., Jastrzȩbska, M. (2010). A Note on a Formal Approach to Rough Operators. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13529-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13528-6

  • Online ISBN: 978-3-642-13529-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics