Abstract
Proof complexity is an interdisciplinary area of research utilizing techniques from logic, complexity, and combinatorics towards the main aim of understanding the complexity of theorem proving procedures. Traditionally, propositional proofs have been the main object of investigation in proof complexity. Due their richer expressivity and numerous applications within computer science, also non-classical logics have been intensively studied from a proof complexity perspective in the last decade, and a number of impressive results have been obtained. In this paper we give the first survey of this field concentrating on recent developments in proof complexity of non-classical logics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions. Combinatorica 7(1), 1–22 (1987)
Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing 34(1), 67–88 (2004)
Ajtai, M.: The complexity of the pigeonhole-principle. Combinatorica 14(4), 417–433 (1994)
Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56. Birkhäuser, Basel (1995)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P., Woods, A.: Exponential lower bounds for the pigeonhole principle. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 200–220 (1992)
Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)
Buss, S.R., Mints, G.: The complexity of the disjunction and existential properties in intuitionistic logic. Annals of Pure and Applied Logic 99(1-3), 93–104 (1999)
Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of propositional default logic. In: Proc. 13th International Conference on Theory and Applications of Satisfiability Testing. LNCS. Springer, Heidelberg (2010)
Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3(2), 226–278 (2002)
Buss, S.R., Pudlák, P.: On the computational content of intuitionistic propositional proofs. Annals of Pure and Applied Logic 109(1-2), 49–63 (2001)
Beame, P.W., Pitassi, T., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)
Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)
Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)
Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 174–183 (1996)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)
Cadoli, M., Schaerf, M.: A survey of complexity results for nonmonotonic logics. Journal of Logic Programming 17(2/3&4), 127–160 (1993)
Dowd, M.: Model-theoretic aspects of P≠NP (1985) (unpublished manuscript)
Ferrari, M., Fiorentini, C., Fiorino, G.: On the complexity of the disjunction property in intuitionistic and modal logics. ACM Transactions on Computational Logic 6(3), 519–538 (2005)
Friedman, H.: One hundred and two problems in mathematical logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)
Ghilardi, S.: Unification in intuitionistic logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)
Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and Computation 2(3), 397–425 (1992)
Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)
Hrubeš, P.: A lower bound for intuitionistic logic. Annals of Pure and Applied Logic 146(1), 72–90 (2007)
Hrubeš, P.: Lower bounds for modal logics. The Journal of Symbolic Logic 72(3), 941–958 (2007)
Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic 157(2-3), 194–205 (2009)
Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)
Jeřábek, E.: Admissible rules of modal logics. Journal of Logic and Computation 15(4), 411–431 (2005)
Jeřábek, E.: Frege systems for extensible modal logics. Annals of Pure and Applied Logic 142, 366–379 (2006)
Jeřábek, E.: Complexity of admissible rules. Archive for Mathematical Logic 46(2), 73–92 (2007)
Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)
Jeřábek, E.: Admissible rules of Łukasiewicz logic. Journal of Logic and Computation (to appear, 2010)
Jeřábek, E.: Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation (to appear, 2010)
Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54(3), 1063–1079 (1989)
Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for \(S^1_2\) and EF. Information and Computation 140(1), 82–94 (1998)
Krajíček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)
Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)
Krajíček, J.: Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic 62(2), 457–486 (1997)
Krajíček, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic Logic 7(2), 197–212 (2001)
Krajíček, J.: Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. The Journal of Symbolic Logic 69(1), 265–286 (2004)
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)
Mints, G., Kojevnikov, A.: Intuitionistic Frege systems are polynomially equivlalent. Journal of Mathematical Sciences 134(5), 2392–2402 (2006)
Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proc. 1st Innovations in Computer Science (2010)
Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)
Razborov, A.A.: Lower bounds on the monotone complexity of boolean functions. Doklady Akademii Nauk SSSR 282, 1033–1037 (1985); English translation in: Soviet Math. Doklady 31, 354–357
Razborov, A.A.: Lower bounds for the polynomial calculus. Computational Complexity 7(4), 291–324 (1998)
Reckhow, R.A.: On the lengths of proofs in the propositional calculus. PhD thesis, University of Toronto (1976)
Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
Rybakov, V.V.: Admissibility of logical inference rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)
Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)
Tseitin, G.C.: On the complexity of derivations in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)
Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beyersdorff, O. (2010). Proof Complexity of Non-classical Logics. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds) Theory and Applications of Models of Computation. TAMC 2010. Lecture Notes in Computer Science, vol 6108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13562-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13562-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13561-3
Online ISBN: 978-3-642-13562-0
eBook Packages: Computer ScienceComputer Science (R0)