Skip to main content

The Complexity of Geometric Problems in High Dimension

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6108))

  • 916 Accesses

Abstract

Many important NP-hard geometric problems in ℝd are trivially solvable in time n O(d) (where n is the size of the input), but such a time dependency quickly becomes intractable for higher-dimensional data, and thus it is interesting to ask whether the dependency on d can be mildened. We try to adress this question by applying techniques from parameterized complexity theory.

More precisely, we describe two different approaches to show parameterized intractability of such problems: An “established” framework that gives fpt-reductions from the k-clique problem to a large class of geometric problems in ℝd, and a different new approach that gives fpt-reductions from the k-Sum problem.

While the second approach seems conceptually simpler, the first approach often yields stronger results, in that it further implies that the d-dimensional problems reduced to cannot be solved in time n o(d), unless the Exponential-Time Hypothesis (ETH) is false.

This research was supported by the German Science Foundation (DFG) under grant Kn 591/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210 (1995)

    Article  MathSciNet  Google Scholar 

  2. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Backer, J., Keil, J.: The mono- and bichromatic empty rectangle and square problems in all dimensions. In: Proc. of the 9th Latin American Theoretical Informatics Symposium, Oaxaca, Mexico. LNCS. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  5. Bremner, D., Chen, D., Iacono, J., Langerman, S., Morin, P.: Output-sensitive algorithms for Tukey depth and related problems. Statistics and Computing 18(3), 259–266 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-dimensional point set pattern matching. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 175–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms (2009) (to appear)

    Google Scholar 

  8. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. In: Proc. 19th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 836–843 (2008)

    Google Scholar 

  9. Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc. 24th Annual Symposium on Computational Geometry, pp. 94–100 (2008)

    Google Scholar 

  10. Chandrasekaran, R., Kabadi, S.N., Murthy, K.G.: Some NP-complete problems in linear programming. Operations Research Letters 1(3), 101–104 (1982)

    Article  MATH  Google Scholar 

  11. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete & Computational Geometry 10, 377–409 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201(2), 216–231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (November 1999)

    Google Scholar 

  15. Dyer, M.E.: The Complexity of Vertex Enumeration Methods. Mathematics of Operations Research 8(3), 381–402 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eckstein, J., Hammer, P.L., Liu, Y., Nediak, M., Simeone, B.: The maximum box problem and its application to data analysis. Comput. Optim. Appl. 23(3), 285–298 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Erickson, J.: New lower bounds for convex hull problems in odd dimensions. SIAM J. Comput. 28(4), 1198–1214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)

    Google Scholar 

  19. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer, Heidelberg (2006)

    Google Scholar 

  20. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational geometry. Comput. Geom. Theory Appl. 5(3), 165–185 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Giannopoulos, P., Knauer, C., Rote, G.: The parameterized complexity of some geometric problems in unbounded dimension. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 198–209. Springer, Heidelberg (2009)

    Google Scholar 

  22. Giannopoulos, P., Knauer, C., Wahlström, M., Werner, D.: Hardness of discrepancy and related problems parameterized by the dimension. In: 26th European Workshop on Computational Geometry, EuroCG (to appear, 2010)

    Google Scholar 

  23. Gnewuch, M., Srivastav, A., Winzen, C.: Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complexity 25, 115–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Langerman, S., Morin, P.: Covering things with things. Discrete & Computational Geometry 33(4), 717–729 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Matousek, J.: On geometric optimization with few violated constraints. Discrete & Computational Geometry 14(4), 365–384 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Megiddo, N.: On the complexity of polyhedral separability. Discrete & Computational Geometry 3, 325–337 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10, 327–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knauer, C. (2010). The Complexity of Geometric Problems in High Dimension. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds) Theory and Applications of Models of Computation. TAMC 2010. Lecture Notes in Computer Science, vol 6108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13562-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13562-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13561-3

  • Online ISBN: 978-3-642-13562-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics