Skip to main content

On the Polarization Analysis of Optical Beams for Use in Quantum Communications between Earth and Space

  • Conference paper
Personal Satellite Services (PSATS 2010)

Abstract

In this work we will address the transformation of the polarization state of single photons during the transmission along a Space channel and the measures to correct them in order to accomplish Quantum Communication (QC) between Space and Earth.

An open issue in space scale QC is the preservation of polarization states by the telescope and all the involved moving optical components, as well as ensuring the alignment of the polarization basis between the orbiting sender and receiver on Earth. In the following, we will treat in detail this crucial aspect, by modelling the measurement of the polarization properties of the quantum channel, expressed by its Mueller matrix, in the experimental conditions of Ref. [12] with the addition of the control of the outbound state of the photons and the measure of the polarization state of the inbound beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Villoresi, P., et al.: Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys. 10, 033038 (2008)

    Article  Google Scholar 

  2. Buttler, W.T., et al.: Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283 (1998)

    Article  Google Scholar 

  3. Kurtsiefer, C., Zarda, P., Halder, M., Weinfurter, H., Gorman, P.M., Tapster, P.R., Rarity, J.: GA step towards global key distribution. Nature 419, 450 (2002)

    Article  Google Scholar 

  4. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W.R., Zeilinger, A.: Long distance quantum communication with entangled photons using satellites. IEEE J. Sel. Top. Quantum Electron. 9, 1541 (2003)

    Article  Google Scholar 

  5. Villoresi, P., et al.: Space-to-ground quantum communication using an optical ground station: a feasibility study. In: Quantum Communications and Quantum Imaging II Proc. SPIE, vol. 5551, p. 113 (2004) quantph/0408067v1

    Google Scholar 

  6. Peng, C.Z., et al.: Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite- based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005)

    Google Scholar 

  7. Bonato, C., et al.: Influence of satellite motion on polarization qubits in a space-Earth quantum communication link. Opt. Express 14, 10050 (2006)

    Article  Google Scholar 

  8. Bonato, C., Pernechele, C., Villoresi, P.: Influence of all-reflective optical systems in the transmission of polarization-encoded qubits. J. Opt. A: Pure Appl. Opt. 9899 (2007)

    Google Scholar 

  9. Bonato, C., Tomaello, A., Deppo, V.D., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New J. Phys. 11 (2009), 45017

    Google Scholar 

  10. Ursin, R., et al.: Space-quest: experiments with quantum entanglement in space. In: Int. Aeronautical Congress Proc. A2.1.3 (2008), arXiv:0806.0945

    Google Scholar 

  11. Degnan, J.J.: Millimiter accuracy satellite laser ranging: A review. Contributions of Space Geodesy to Geodynamics Technology. In: Smith, D.E., Turcotte, D.L. (eds.). AGU Geodynamics Series, vol. 25, p. 133 (1993)

    Google Scholar 

  12. Aiello, A., Puentes, G., Voigt, D., Woerdman, J.P.: Maximum-likelihood estimation of Mueller matrices. Optics letters 31, 6 (2006)

    Google Scholar 

  13. Bouwmeester, D., Ekert, A.K., Zeilinger, A.: Physics of Quantum Information. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  14. Goldstein, D.: Polarized Light, 2nd edn. Marcel Dekker, New York (2003)

    Google Scholar 

  15. Ahmad, J.E., Takakura, Y.: Estimation of physically realizable Mueller matrices from experiments using global constrained optimization. Optics express (August 28, 2008)

    Google Scholar 

  16. Toyoshima, M., Takenaka, H., Shoji, Y., Takayama, Y., Koyama, Y., Kunimori, H.: Polarization measurements through space-to- ground atmospheric propagation paths by using a highly polarized laser source in space. Optics express (November 23, 2009)

    Google Scholar 

  17. Howell, B.J.: Measurement of the polarization effects of an instrument using partially polarized light. App. Opt. 18(6) (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Dall’Arche, A., Tomaello, A., Bonato, C., Villoresi, P. (2010). On the Polarization Analysis of Optical Beams for Use in Quantum Communications between Earth and Space. In: Sithamparanathan, K., Marchese, M., Ruggieri, M., Bisio, I. (eds) Personal Satellite Services. PSATS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13618-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13618-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13617-7

  • Online ISBN: 978-3-642-13618-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics