Skip to main content

Privacy-Preserving Network Aggregation

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6118))

Included in the following conference series:

Abstract

Consider the scenario where information about a large network is distributed across several different parties or commercial entities. Intuitively, we would expect that the aggregate network formed by combining the individual private networks would be a more faithful representation of the network phenomenon as a whole. However, privacy preservation of the individual networks becomes a mandate. Thus, it would be useful, given several portions of an underlying network p 1 ...p n , to securely compute the aggregate of all the networks p i in a manner such that no party learns information about any other party’s network. In this work, we propose a novel privacy preservation protocol for the non-trivial case of weighted networks. The protocol is secure against malicious adversaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chawla, N.V., Karakoulas, G.: Learning from labeled and unlabeled data: An empirical study across techniques and domains. JAIR 23, 331–366 (2005)

    MATH  Google Scholar 

  2. Cramer, R., Damgard, I., Nielsen, J.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: PKC, pp. 90–104 (2001)

    Google Scholar 

  4. Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

    Google Scholar 

  6. Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Heckman, J.: Sample selection bias as a specification error. Econometrica: Journal of the econometric society, 153–161 (1979)

    Google Scholar 

  8. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE TKDE 16(9), 1026–1037 (2004)

    Google Scholar 

  9. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

    Google Scholar 

  10. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography (1996)

    Google Scholar 

  11. Paillier, P.: Public key cryptosystem based on composite degree residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Raeder, T., Blanton, M., Chawla, N., Frikken, K.: Privacy-preserving network aggregation. Technical Report TR-2010-02, Notre Dame Computer Science and Engineering (2010)

    Google Scholar 

  13. Raeder, T., Chawla, N.: Modeling a store’s product space as a social network. In: Proceedings of ASONAM, Athens, Greece (2009)

    Google Scholar 

  14. Raith, M.: A general model of information sharing in oligopoly. Journal of Economic Theory 71(1), 260–288 (1996)

    Article  MATH  Google Scholar 

  15. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of KDD 2002, pp. 639–644. ACM, New York (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raeder, T., Blanton, M., Chawla, N.V., Frikken, K. (2010). Privacy-Preserving Network Aggregation. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13657-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13656-6

  • Online ISBN: 978-3-642-13657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics