Abstract
In many privacy preserving applications, specific variables are required to be disturbed simultaneously in order to guarantee correlations among them. Multivariate Equi-Depth Swapping (MEDS) is a natural solution in such cases, since it provides uniform privacy protection for each data tuple. However, this approach performs ineffectively not only in computational complexity (basically O(n 3) for n data tuples), but in data utility for distance-based data analysis. This paper discusses the utilisation of Multivariate Equi-Width Swapping (MEWS) to enhance the utility preservation for such cases. With extensive theoretical analysis and experimental results, we show that, MEWS can achieve a similar performance in privacy preservation to that of MEDS and has only O(n) computational complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)
Asuncion, A., Newman, D.: Uci machine learning repository. University of California, Irvine (2007)
Carlson, M., Salabasis, M.: A data-swapping technique for generating synthetic samples; a method for disclosure control. Research in Official Statistics 5, 35–64 (2002)
Dalenius, T., Reiss, S.P.: Data-swapping: A technique for disclosure control (extened abstract). In: The Section on Survey Research Methods, Washington, DC, pp. 191–194 (1978)
Fienberg, S.E., McIntyre, J.: Data swapping: Variations on a theme by ddalenius and reiss. J. Official Statist. 21, 209–323 (2005)
Fienberg, S.E.: Comment on a paper by m. carlson and m. salabasis: a data-swapping technique using ranks - a method for disclosure control. Research in Official Statistics 5(2), 65–70 (2002)
Li, Y., Shen, H.: Equi-width data swapping for private data publication. In: PDCAT 2009: The Tenth International Conference on Parallel and Distributed Computing, Applications and Technologies, Hiroshima, Japan (December 2009)
Moore, R.A.: Controlled data-swapping techniques for masking public use microdata sets. Research report RR96/04, U.S. Bureau of the Census, Statistical Research Division, Washington D.C (1996)
Reiss, S.P., Post, M.J., Dalenius, T.: Non-reversible privacy transformations. In: PODS 1982: Proceedings of the 1st ACM SIGACT-SIGMOD symposium on Principles of database systems, pp. 139–146. ACM, New York (1982)
Mukherjee, S., Chen, Z., Gangopadhyay, A.: A privacy-preserving technique for euclidean distance-based mining algorithms using fourier-related transforms. The VLDB Journal 15(4), 293–315 (2006)
Muralidhar, K., Sarathy, R.: Data shuffling - a new masking approach for numerical data. Management Science 52(5), 658–670 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Y., Shen, H. (2010). Multivariate Equi-width Data Swapping for Private Data Publication. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-13657-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13656-6
Online ISBN: 978-3-642-13657-3
eBook Packages: Computer ScienceComputer Science (R0)