Abstract
We describe a group of concepts that facilitate reading of multi-modality breast imaging data in a single workplace and discuss their use and limitations. Our concepts comprise intelligent preprocessing, spatial referencing and dedicated workflow tools and aim at homogenizing and simplifying the multi-modality workplace, at improving the standardization across modalities and vendors, at supporting cross-modality information linkage, and at reducing required user interaction and waiting times, all at a high level of flexibility for the user to access the available imaging information at any time required. As a result, many situations where information from multiple modalities and time points must be assessed, both qualitatively and quantitatively, are expected to be handled more efficiently and reliably.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lopez, J.K., Bassett, L.W.: Invasive lobular carcinoma of the breast: spectrum of mammographic, US, and MR imaging findings. Radiographics 29(1), 165–176 (2009)
Kuhl, C., Weigel, S., Schrading, S., et al.: Prospective Multicenter Cohort Study to Refine Management Recommendations for Women at Elevated Familial Risk of Breast Cancer: The EVA Trial. J. Clin. Oncology 28(9), 1450–1457 (2010)
Sardanelli, F., Podo, F., D’Agnolo, G., et al.: Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results. Radiology 242(3), 698–715 (2007)
Horsch, K., Giger, M.L., Vyborny, C.J., et al.: Classification of Breast Lesions with Multimodality Computer-aided Diagnosis: Observer Study on an Independent Clinical Data Set. Radiology 240(2), 357–368 (2006)
Zaidi, H., Montandon, M.L.L., Alavi, A.: The clinical role of fusion imaging using PET, CT, and MR imaging. Magn. Reson. Imaging Clin. N. Am. 18(1), 133–149 (2010)
Hahn, H.K., Valer, V., Schlemmer, H.P., et al.: Efficient Whole Body MRI and Multimodal Softcopy Reading by Persistent Workflow Modeling. Proc. RSNA: LL-I 3100 (2006)
Baum, K.G., Helguera, M., Krol, A.: Fusion viewer: A new tool for fusion and visualization of multimodal medical data sets. J. Digit Imaging 21(Suppl. 1), S59–S68 (2008)
Reiner, B., Siegel, E., Carrino, J.A.: Workflow Optimization: Current Trends and Future Directions. J. Dig. Imaging 15(3), 141–152 (2002)
Guo, Y., Sivaramakrishna, R., Lu, C.C.C., et al.: Breast image registration techniques: a survey. Med. Biol. Eng. Comput. 44(1-2), 15–26 (2006)
Li, X., Dawant, B.M., Welch, E.B., et al.: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. MRI. 27(9), 1258–1270 (2009)
Collignon, A., Maes, F., Delaere, D., et al.: Automated multi-modality image registration based on information theory. In: Proc. IPMI, pp. 263–274 (1995)
Davis, M.H., Khotanzad, A., Flemig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE TMI 16(3), 317–328 (1997)
Marti, R., Zwiggelaar, R., Rubin, C., Denton, E.: 2D-3D correspondence in mammography. Cybernetics and Systems 35, 85–105 (2004)
Ruiter, N.: Registration of X-ray mammograms and MR-volumes of the female breast based on simulated mammographic deformation. PhD thesis, Univ. Mannheim (2003)
Azar, F.S., Lee, K., Khamene, A., et al.: Standardized platform for coregistration of nonconcurrent diffuse optical and magnetic resonance breast images obtained in different geometries. J. Biomed. Opt. 12, 051902 (2007)
Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans Communications 43(12), 2959–2965 (1995)
Zijdenbos, A.P., Forghani, R., Evans, A.C.: Automatic Pipeline Analysis of 3-D MRI Data for Clinical Trials: Application to Multiple Sclerosis. IEEE TMI 21(10), 1280–1291 (2002)
Madabhushi, A.: Digital Pathology Image Analysis: Opportunities and Challenges. Imaging Med. 1(1), 7–10 (2009)
Petushi, S., Garcia, F.U., Haber, M.M., et al.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6, 14 (2006)
Petushi, S., Zhang, J., Zhu, W., et al.: A visual analytics system for breast tumor evaluation. Anal. Quant. Cytol. Histol 30(5), 279–290 (2008)
Zöhrer, F., Harz, M.T., Bödicker, A., et al.: Interactive Multi-Scale Contrast Enhancement of Previously Processed Digital Mammograms. In: Martí, J., et al. (eds.) Proc. IWDM. LNCS, vol. 6136. Springer, Heidelberg (2010)
Böhler, T., Schilling, K., Bick, U., Hahn, H.K.: Deformable Image Registration of Follow-up Breast Magnetic-resonance Images. In: Proc. WBIR (in print 2010)
Irwin, M.R., Downey, D.B., Gardi, L., Fenster, A.: Registered 3-D ultrasound and digital stereotactic mammography for breast biopsy guidance. IEEE TMI 27(3), 391–401 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hahn, H.K. et al. (2010). Concepts for Efficient and Reliable Multi-modal Breast Image Reading. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-13666-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13665-8
Online ISBN: 978-3-642-13666-5
eBook Packages: Computer ScienceComputer Science (R0)