Skip to main content

Concepts for Efficient and Reliable Multi-modal Breast Image Reading

  • Conference paper
Digital Mammography (IWDM 2010)

Abstract

We describe a group of concepts that facilitate reading of multi-modality breast imaging data in a single workplace and discuss their use and limitations. Our concepts comprise intelligent preprocessing, spatial referencing and dedicated workflow tools and aim at homogenizing and simplifying the multi-modality workplace, at improving the standardization across modalities and vendors, at supporting cross-modality information linkage, and at reducing required user interaction and waiting times, all at a high level of flexibility for the user to access the available imaging information at any time required. As a result, many situations where information from multiple modalities and time points must be assessed, both qualitatively and quantitatively, are expected to be handled more efficiently and reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lopez, J.K., Bassett, L.W.: Invasive lobular carcinoma of the breast: spectrum of mammographic, US, and MR imaging findings. Radiographics 29(1), 165–176 (2009)

    Article  Google Scholar 

  2. Kuhl, C., Weigel, S., Schrading, S., et al.: Prospective Multicenter Cohort Study to Refine Management Recommendations for Women at Elevated Familial Risk of Breast Cancer: The EVA Trial. J. Clin. Oncology 28(9), 1450–1457 (2010)

    Article  Google Scholar 

  3. Sardanelli, F., Podo, F., D’Agnolo, G., et al.: Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results. Radiology 242(3), 698–715 (2007)

    Article  Google Scholar 

  4. Horsch, K., Giger, M.L., Vyborny, C.J., et al.: Classification of Breast Lesions with Multimodality Computer-aided Diagnosis: Observer Study on an Independent Clinical Data Set. Radiology 240(2), 357–368 (2006)

    Article  Google Scholar 

  5. Zaidi, H., Montandon, M.L.L., Alavi, A.: The clinical role of fusion imaging using PET, CT, and MR imaging. Magn. Reson. Imaging Clin. N. Am. 18(1), 133–149 (2010)

    Article  Google Scholar 

  6. Hahn, H.K., Valer, V., Schlemmer, H.P., et al.: Efficient Whole Body MRI and Multimodal Softcopy Reading by Persistent Workflow Modeling. Proc. RSNA: LL-I 3100 (2006)

    Google Scholar 

  7. Baum, K.G., Helguera, M., Krol, A.: Fusion viewer: A new tool for fusion and visualization of multimodal medical data sets. J. Digit Imaging 21(Suppl. 1), S59–S68 (2008)

    Article  Google Scholar 

  8. Reiner, B., Siegel, E., Carrino, J.A.: Workflow Optimization: Current Trends and Future Directions. J. Dig. Imaging 15(3), 141–152 (2002)

    Article  Google Scholar 

  9. Guo, Y., Sivaramakrishna, R., Lu, C.C.C., et al.: Breast image registration techniques: a survey. Med. Biol. Eng. Comput. 44(1-2), 15–26 (2006)

    Article  Google Scholar 

  10. Li, X., Dawant, B.M., Welch, E.B., et al.: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. MRI. 27(9), 1258–1270 (2009)

    Article  Google Scholar 

  11. Collignon, A., Maes, F., Delaere, D., et al.: Automated multi-modality image registration based on information theory. In: Proc. IPMI, pp. 263–274 (1995)

    Google Scholar 

  12. Davis, M.H., Khotanzad, A., Flemig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE TMI 16(3), 317–328 (1997)

    Google Scholar 

  13. Marti, R., Zwiggelaar, R., Rubin, C., Denton, E.: 2D-3D correspondence in mammography. Cybernetics and Systems 35, 85–105 (2004)

    Google Scholar 

  14. Ruiter, N.: Registration of X-ray mammograms and MR-volumes of the female breast based on simulated mammographic deformation. PhD thesis, Univ. Mannheim (2003)

    Google Scholar 

  15. Azar, F.S., Lee, K., Khamene, A., et al.: Standardized platform for coregistration of nonconcurrent diffuse optical and magnetic resonance breast images obtained in different geometries. J. Biomed. Opt. 12, 051902 (2007)

    Article  Google Scholar 

  16. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans Communications 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  17. Zijdenbos, A.P., Forghani, R., Evans, A.C.: Automatic Pipeline Analysis of 3-D MRI Data for Clinical Trials: Application to Multiple Sclerosis. IEEE TMI 21(10), 1280–1291 (2002)

    Google Scholar 

  18. Madabhushi, A.: Digital Pathology Image Analysis: Opportunities and Challenges. Imaging Med. 1(1), 7–10 (2009)

    Article  Google Scholar 

  19. Petushi, S., Garcia, F.U., Haber, M.M., et al.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6, 14 (2006)

    Article  Google Scholar 

  20. Petushi, S., Zhang, J., Zhu, W., et al.: A visual analytics system for breast tumor evaluation. Anal. Quant. Cytol. Histol 30(5), 279–290 (2008)

    Google Scholar 

  21. Zöhrer, F., Harz, M.T., Bödicker, A., et al.: Interactive Multi-Scale Contrast Enhancement of Previously Processed Digital Mammograms. In: Martí, J., et al. (eds.) Proc. IWDM. LNCS, vol. 6136. Springer, Heidelberg (2010)

    Google Scholar 

  22. Böhler, T., Schilling, K., Bick, U., Hahn, H.K.: Deformable Image Registration of Follow-up Breast Magnetic-resonance Images. In: Proc. WBIR (in print 2010)

    Google Scholar 

  23. Irwin, M.R., Downey, D.B., Gardi, L., Fenster, A.: Registered 3-D ultrasound and digital stereotactic mammography for breast biopsy guidance. IEEE TMI 27(3), 391–401 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, H.K. et al. (2010). Concepts for Efficient and Reliable Multi-modal Breast Image Reading. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13666-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13665-8

  • Online ISBN: 978-3-642-13666-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics