Abstract
We have developed a segmentation approach, which is based on modelling local texture information and incorporates both greylevel and spatial aspects. Variation in local greylevel configuration/appearance is represented in histogram format for which the distribution varies with texture appearance. Segmentation results based on full mammographic images are presented. In addition, the potential use of the segmentation results for mammographic risk assessment and abnormality detection is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Astley, S.M.: Computer-based detection and prompting of mammographic abnormalities. British Journal of Radiology 77, S194–S200 (2004)
Miller, P.I., Astley, S.M.: Detection of breast asymmetries using anatomical features. International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1461–1476 (1993)
Miller, P.I., Astley, S.M.: Classification of breast tissue by texture analysis. Image and Vision Computing 10, 277–282 (1993)
Zwiggelaar, R., Denton, E.R.E.: Texture based segmentation. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 433–440. Springer, Heidelberg (2006)
Petroudi, S., Brady, M.: Breast density segmentation using texture. In: 8th International Workshop on Digital Mammography, pp. 609–615 (2006)
Oliver, A., Freixenet, J., MartÃ, R., Pont, J., Pérez, E., Denton, E.R.E., Zwiggelaar, R.: A novel breast tissue density classification framework. IEEE Transactions on Information Technology in BioMedicine 12, 55–65 (2008)
He, W., Muhimmah, I., Denton, E.R.E., Zwiggelaar, R.: Mammographic segmentation based on texture modelling of tabar mammographic building blocks. In: Krupinski, E.A. (ed.) IWDM 2008. LNCS, vol. 5116, pp. 17–24. Springer, Heidelberg (2008)
Yaffe, M.J.: Mammographic density - measurement of mammographic density. Breast Cancer Research 10 (2008)
Subashini, T.S., Ramalingam, V., Palanivel, S.: Automated assessment of breast tissue density in digital mammograms. Computer Vision and Image Understanding 114, 33–43 (2010)
Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Astley, S.M., Taylor, C.J., Boggis, C.R.M.: Model-based detection of spiculated lesions in mammograms. Medical Image Analysis 3(1), 39–62 (1999)
Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)
Byng, J.W., Yaffe, M.J., Lockwood, G.A., Little, L.E., Tritchler, D.L., Boyd, N.F.: Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1), 66–74 (1997)
Gram, I.T., Funkhouser, E., Tabar, L.: The tabar classification of mammographic parenchymal patterns. European Journal of Radiology 24(2), 131–136 (1997)
Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J.: The mammographic images analysis society digital mammogram database. In: Gale, D., Astley, Cairns (eds.) Digital Mammography, pp. 375–378. Elsevier, Amsterdam (1994)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2032–2047 (2009)
Pietikainen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)
Ojala, T., Pietikainen, M., Maenpa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)
Zhang, H., Gao, W., Chen, X., Zhao, D.: Object detection using spatial histogram features. Image and Vision Computing 24, 327–341 (2006)
Birchfield, S.T., Rangarajan, S.: Spatiograms versus histograms for region-based tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1158–1163 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zwiggelaar, R. (2010). Local Greylevel Appearance Histogram Based Texture Segmentation. In: MartÃ, J., Oliver, A., Freixenet, J., MartÃ, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-13666-5_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13665-8
Online ISBN: 978-3-642-13666-5
eBook Packages: Computer ScienceComputer Science (R0)