Skip to main content

Scanner for Integrated X-Ray Breast Tomosynthesis and Molecular Breast Imaging Tomosynthesis

  • Conference paper
Digital Mammography (IWDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6136))

Included in the following conference series:

Abstract

A dual modality tomosynthesis (DMT) breast scanner has been developed that combines x-ray breast tomosynthesis (XBT) and molecular breast imaging tomosynthesis (MBIT) on a common upright gantry to obtain co-registered structural and functional tomosynthesis images. This paper describes the scanner’s design and operation, and summarizes the results of a pilot clinical evaluation using the tracer 99mTc-sestamibi. The pilot study results suggest that DMT breast scanning is feasible and provides improved specificity and positive predictive value compared to XBT alone. Potential clinical roles for DMT scanning include problem solving for equivocal mammographic/ultrasound studies; as an aid in biopsy target selection following a positive mammogram with multiple suspicious areas; cancer surveillance in patients with a personal history of breast cancer; pre-surgical planning for determination of disease extent; as an alternative for women for whom MRI is impossible; and for monitoring response to neoadjuvant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badano, A., Kyprianou, I.S., Jennings, R.J., Sempau, J.: Anisotropic imaging performance in breast tomosynthesis. Med. Phys. 34(11), 4076–4091 (2007)

    Article  Google Scholar 

  2. Chen, Y., Lo, J.Y., Dobbins III, J.T.: Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications. Med. Phys. 34(10), 3885–3892 (2007)

    Article  Google Scholar 

  3. Ma, A.K., Darambara, D.G., Stewart, A., Gunn, S., Bullard, E., Ma, A.K.W., Darambara, D.G., Stewart, A., Gunn, S., Bullard, E.: Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations. Med. Phys. 35(12), 5278–5289 (2008)

    Article  Google Scholar 

  4. Sechopoulos, I., Ghetti, C.: Optimization of the acquisition geometry in digital tomosynthesis of the breast. Med. Phys. 36(4), 1199–1207 (2009)

    Article  Google Scholar 

  5. Van de Sompel, D., Brady, M.: A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 2008, pp. 2729–2732 (2008)

    Google Scholar 

  6. Zeng, K., Yu, H., Zhao, S., Fajardo, L.L., Ruth, C., Jing, Z., Wang, G.: Digital tomosynthesis aided by low-resolution exact computed tomography. Journal of Computer Assisted Tomography 31(6), 976–983 (2007)

    Article  Google Scholar 

  7. Zhao, B., Zhao, W.: Three-dimensional linear system analysis for breast tomosynthesis. Med. Phys. 35(12), 5219–5232 (2008)

    Article  Google Scholar 

  8. Mainprize, J.G., Bloomquist, A.K., Kempston, M.P., Yaffe, M.J.: Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis. Med. Phys. 33(9), 3159–3164 (2006)

    Article  Google Scholar 

  9. Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., Castleberry, D.E., Opsahl-Ong, B.H., Landberg, C.E., Slanetz, P.J., Giardino, A.A., Moore, R., et al.: Digital tomosynthesis in breast imaging. Radiology 205(2), 399–406 (1997)

    Google Scholar 

  10. Sechopoulos, I., Suryanarayanan, S., Vedantham, S., D’Orsi, C., Karellas, A.: Computation of the glandular radiation dose in digital tomosynthesis of the breast. Medical Physics 34(1), 221–232 (2007)

    Article  Google Scholar 

  11. Wu, T., Stewart, A., Stanton, M., McCauley, T., Phillips, W., Kopans, D.B., Moore, R.H., Eberhard, J.W., Opsahl-Ong, B., Niklason, L., et al.: Tomographic mammography using a limited number of low-dose cone-beam projection images. Medical Physics 30(3), 365–380 (2003)

    Article  Google Scholar 

  12. Brem, R.F., Rapelyea, J.A., Zisman, G., Mohtashemi, K., Raub, J., Teal, C.B., Majewski, S., Welch, B.L.: Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology 237(1), 274–280 (2005)

    Article  Google Scholar 

  13. Brem, R.F., Fishman, M., Rapelyea, J.A., Brem, R.F., Fishman, M., Rapelyea, J.A.: Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: a comparative study. Academic Radiology 14(8), 945–950 (2007)

    Article  Google Scholar 

  14. Hruska, C.B., Phillips, S.W., Whaley, D.H., Rhodes, D.J., O’Connor, M.K.: Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors. AJR 2008 American Journal of Roentgenology 191(6), 1805–1815 (2008)

    Article  Google Scholar 

  15. Even-Sapir, E., Keidar, Z., Bar-Shalom, R.: Hybrid imaging (SPECT/CT and PET/CT)–improving the diagnostic accuracy of functional/metabolic and anatomic imaging. [Review] [132 refs]. Seminars in Nuclear Medicine 39(4), 264–275 (2009)

    Article  Google Scholar 

  16. Magne, N., Chargari, C., Vicenzi, L., Gillion, N., Messai, T., Magne, J., Bonardel, G., Haie-Meder, C.: New trends in the evaluation and treatment of cervix cancer: the role of FDG-PET. [Review] [102 refs]. Cancer Treatment Reviews 34(8), 671–681 (2008)

    Article  Google Scholar 

  17. Kuo, P.H., Carlson, K.R., Christensen, I., Girardi, M., Heald, P.W.: FDG-PET/CT for the evaluation of response to therapy of cutaneous T-cell lymphoma to vorinostat (suberoylanilide hydroxamic acid, SAHA) in a phase II trial. Molecular Imaging & Biology 10(6), 306–314 (2008)

    Article  Google Scholar 

  18. Delbeke, D., Schoder, H., Martin, W.H., Wahl, R.L.: Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. [Review] [228 refs]. Seminars in Nuclear Medicine 39(5), 308–340 (2009)

    Article  Google Scholar 

  19. Cherry, S.R.: Multimodality imaging: beyond PET/CT and SPECT/CT. [Review] [59 refs]. Seminars in Nuclear Medicine 39(5), 348–353 (2009)

    Article  Google Scholar 

  20. Bockisch, A., Freudenberg, L.S., Schmidt, D., Kuwert, T.: Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. [Review] [120 refs]. Seminars in Nuclear Medicine 39(4), 276–289 (2009)

    Article  Google Scholar 

  21. Sung, Y.M., Lee, K.S., Kim, B.T., Choi, J.Y., Chung, M.J., Shim, Y.M., Yi, C.A., Kim, T.S.: (18)F-fdg pet versus (18)F-fdg pet/ct for adrenal gland lesion characterization: A comparison of diagnostic efficacy in lung cancer patients. Korean Journal of Radiology 9(1), 19–28 (2008)

    Article  Google Scholar 

  22. Tatsumi, M., Miller, J.H., Wahl, R.L.: 18F-FDG PET/CT in evaluating non-CNS pediatric malignancies.[see comment]. Journal of Nuclear Medicine 48(12), 1923–1931 (2007)

    Article  Google Scholar 

  23. Bowen, S.L., Wu, Y., Chaudhari, A.J., Fu, L., Packard, N.J., Burkett, G.W., Yang, K., Lindfors, K.K., Shelton, D.K., Hagge, R., et al.: Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging. J. Nucl. Med. 50(9), 1401–1408 (2009)

    Article  Google Scholar 

  24. Crotty, D.J., McKinley, R.L., Tornai, M.P.: Experimental spectral measurements of heavy K-edge filtered beams for x-ray computed mammotomography. Physics in Medicine & Biology 52(3), 603–616 (2007)

    Article  Google Scholar 

  25. Brzymialkiewicz, C.N., Tornai, M.P., McKinley, R.L., Cutler, S.J., Bowsher, J.E.: Performance of dedicated emission mammotomography for various breast shapes and sizes. Physics in Medicine & Biology 51(19), 5051–5064 (2006)

    Article  Google Scholar 

  26. Williams, M.B., Judy, P.G., Gunn, S., Majewski, S.: Dual modality breast tomosynthesis. Radiology 255(1), 191–198 (2010)

    Article  Google Scholar 

  27. Williams, M.B., Simoni, P.U., Smilowitz, L., Stanton, M., Phillips, W.: Analysis of the detective quantum efficiency of a developmental detector for digital mammography. Med. Phys. 26(11), 2273–2285 (1999)

    Article  Google Scholar 

  28. More, M.J., Heng, L., Goodale, P.J., Yibin, Z., Majewski, S., Popov, V., Welch, B., Williams, M.B.: Limited Angle Dual Modality Breast Imaging. IEEE Transactions on Nuclear Science 54(3), 504–513 (2007)

    Article  Google Scholar 

  29. Williams, M.B., Raghunathan, P., More, M.J., Seibert, J.A., Kwan, A., Lo, J.Y., Samei, E., Ranger, N.T., Fajardo, L.L., McGruder, A., et al.: Optimization of exposure parameters in full field digital mammography. Medical Physics 35(6), 2414–2423 (2008)

    Article  Google Scholar 

  30. Pani, R., Scopinaro, F., Pellegrini, R., Soluri, A., Weinberg, I.N., De Vincentis, G.: The role of Compton background and breast compression on cancer detection in scintimammography. Anticancer Research 17, 1645–1650 (1997)

    Google Scholar 

  31. Kieper, D., Majewski, S., Goodale, P., Kross, B., Kundu, B., Li, H., More, M.J., Narayanan, D., Popov, V., Smith, M.F., et al.: Improved lesion visibility in a dedicated dual head scintimammography system - phantom results, pp. 1344–1346 (2002)

    Google Scholar 

  32. Majewski, S., Kieper, D., Curran, E., Keppel, C., Kross, B., Palumbo, A., Popov, V., Weisenberger, A.G., Welch, R., Wojcik, R., et al.: Optimization of dedicated scintimammography procedure using detector prototypes and compressible phantoms. IEEE Trans. Nucl. Sci. 3, 822–829 (2001)

    Article  Google Scholar 

  33. Saunders, R.S.J., Samei, E., Lo, J.Y., Baker, J.A.: Can Compression Be Reduced for Breast Tomosynthesis? Monte Carlo Study on Mass and Microcalcification Conspicuity in Tomosynthesis. Radiology 251(3), 673–682 (2009)

    Article  Google Scholar 

  34. Dunnwald, L.K., Gralow, J.R., Ellis, G.K., Livingston, R.B., Linden, H.M., Lawton, T.J., Barlow, W.E., Schubert, E.K., Mankoff, D.A.: Residual tumor uptake of [99mTc]-sestamibi after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival. Cancer 103(4), 680–688 (2005)

    Article  Google Scholar 

  35. Chuthapisith, S., Eremin, J.M., Eremin, O.: Predicting response to neoadjuvant chemotherapy in breast cancer: molecular imaging, systemic biomarkers and the cancer metabolome (Review). [45 refs]. Oncology Reports 20(4), 699–703 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williams, M.B., Judy, P.G., Gong, Z., Graham, A.E., Majewski, S., Gunn, S. (2010). Scanner for Integrated X-Ray Breast Tomosynthesis and Molecular Breast Imaging Tomosynthesis. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13666-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13665-8

  • Online ISBN: 978-3-642-13666-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics