Skip to main content

Machine Learning Techniques and Mammographic Risk Assessment

  • Conference paper
Digital Mammography (IWDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6136))

Included in the following conference series:

Abstract

Breast tissue characteristics are widely accepted as important indicators of the likelihood of the developing breast cancer. Methods which have the ability to automatically classify breast tissue distribution therefore provide important tools in assessing the risk to which patients are exposed. This paper examines the machine learning techniques employed for knowledge discovery in a recent approach to mammographic risk assessment. A number of weaknesses for selected classification techniques are identified and examined. Additionally, important trends in the data such as decision class confusion and how this affects the ability to perform accurate knowledge discovery on the extracted image data are also explored. The paper is concluded with some ideas as to how the identified trends in the data and weaknesses in the classification approaches could be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American College of Radiology. Illustrated Breast Imaging Reporting and Data System BIRADS, 3rd edn. American College of Radiology (1998)

    Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  3. Braga-Neto, U., Dougherty, E.R.: Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3), 374–380 (2004)

    Article  Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, K.P.: SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  5. Cornelis, C., De Cock, M., Radzikowska, A.: Vaguely Quantified Rough Sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Eriksson, L., Johansson, E., Muller, M., Wold, S.: On the selection of the training set in environmental QSAR analysis when compounds are clustered. Journal of Chemometrics 14, 599–616 (2000)

    Article  Google Scholar 

  7. Hall, M.A.: Correlation-based feature selection machine learning. Ph.D. Thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand (1998)

    Google Scholar 

  8. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis 6(5), 429–450 (2002)

    MATH  Google Scholar 

  9. Jensen, R., Cornelis, C.: A New Approach to Fuzzy-Rough Nearest Neighbour Classification. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 310–319. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Juszczak, P., Duin, R.P.W.: Selective Sampling Methods in One-Class Classification Problems. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 140–148. Springer, Heidelberg (2003)

    Google Scholar 

  11. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proceedings of the International Joint Conference on Artficial Intelligence (IJCAI 1995), pp. 1137–1143 (1995)

    Google Scholar 

  12. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC, Boca Raton (2008)

    Google Scholar 

  13. Martens, H.A., Dardenne, P.: Validation and verification of regression in small data sets. Chemometrics and Intelligent Laboratory Systems 44(1), 99–121 (1998)

    Article  Google Scholar 

  14. Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E.R.E., Zwiggelaar, R.: A Novel Breast Tissue Density Classification Methodology. IEEE Transactions on Information Technology in Biomedicine 12(1), 55–65 (2008)

    Article  Google Scholar 

  15. Orriols, A., Bernad-Mansilla, E.: The class imbalance problem in learning classifier systems: a preliminary study. In: Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (2005)

    Google Scholar 

  16. Raskutti, B., Kowalczyk, A.: Extreme rebalancing for svms: a case study. SIGKDD Explorations 6, 60–69 (2004)

    Article  Google Scholar 

  17. Stone, M.: An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion. Journal of the Royal Statistical Society, Part B 38, 44–47 (1977)

    Google Scholar 

  18. Suckling, J., Partner, J., Dance, D.R., Astley, S.M., Hutt, I., Boggis, C.R.M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The Mammographic Image Analysis Society digital mammogram database. In: International Workshop on Digital Mammography, pp. 211–221 (1994)

    Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mac Parthaláin, N., Zwiggelaar, R. (2010). Machine Learning Techniques and Mammographic Risk Assessment. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13666-5_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13665-8

  • Online ISBN: 978-3-642-13666-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics