Skip to main content

A Minimally Invasive Multimodality Image-Guided (MIMIG) Molecular Imaging System for Peripheral Lung Cancer Intervention and Diagnosis

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2010)

Abstract

The once-promising computed tomography (CT) lung cancer screening appears to result in high false positive rates. To tackle the common difficulties in diagnosing small lung cancer at an early stage, we developed a minimally invasive multimodality image-guided (MIMIG) interventional system for early detection and treatment of peripheral lung cancer. The system consists of new CT image segmentation for surgical planning, intervention guidance for targeting, and molecular imaging for diagnosis. Using advanced image segmentation technique the pulmonary vessels, airways, as well as nodules can be better visualized for surgical planning. These segmented results are then transformed onto the intra-procedural CT for interventional guidance using electromagnetic (EM) tracking. Diagnosis can be achieved at microscopic resolution using a fiber-optic microendoscopy. The system can also be used for fine needle aspiration biopsy to improve the accuracy and efficiency. Confirmed cancer could then be treated on-the-spot using radio-frequency ablation (RFA). The experiments on rabbits with VX2 lung cancer model show both accuracy and efficiency in localization and detecting lung cancer, as well as promising molecular imaging tumor detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McWilliams, A., MacAulay, C., Gazdar, A.F., Lam, S.: Innovative Molecular and Imaging Approaches for the Detection of Lung Cancer and Its Precursor Lesions. Oncogene. 21(45), 6949–6959 (2002)

    Article  Google Scholar 

  2. Wardwell, N.R., Massion, P.P.: Novel Strategies for the Early Detection and Prevention of Lung Cancer. Seminars in oncology 32(3), 259–268 (2005)

    Article  Google Scholar 

  3. Hicks, R.J., Lau, E., Alam, N.Z., Chen, R.Y.: Imaging in the Diagnosis and Treatment of Non-Small Cell Lung Cancer. Respirology (Carlton, Vic. ) 12(2), 165–172 (2007)

    Google Scholar 

  4. Bach, P.B., Jett, J.R., Pastorino, U., Tockman, M.S., Swensen, S.J., Begg, C.B.: Computed Tomography Screening and Lung Cancer Outcomes. Jama 297(9), 953–961 (2007)

    Article  Google Scholar 

  5. Wong, K., Liu, J., Tung, C.H., Wong, S.T.: In Vivo Molecular Microendoscopy in Human Lung Cancer Mouse Model. In: World Molecular Imaging Congress, Montreal, Canada (2009)

    Google Scholar 

  6. Krucker, J., Xu, S., Glossop, N., Viswanathan, A., Borgert, J., Schulz, H., Wood, B.J.: Electromagnetic Tracking for Thermal Ablation and Biopsy Guidance: Clinical Evaluation of Spatial Accuracy. J. Vasc. Interv. Radiol. 18(9), 1141–1150 (2007)

    Article  Google Scholar 

  7. Frantz, D.D., Wiles, A.D., Leis, S.E., Kirsch, S.R.: Accuracy Assessment Protocols for Electromagnetic Tracking Systems. Physics in medicine and biology 48(14), 2241–2251 (2003)

    Article  Google Scholar 

  8. Barratt, D.C., Davies, A.H., Hughes, A.D., Thom, S.A., Humphries, K.N.: Optimisation and Evaluation of an Electromagnetic Tracking Device for High-Accuracy Three-Dimensional Ultrasound Imaging of the Carotid Arteries. Ultrasound in medicine & biology 27(7), 957–968 (2001)

    Article  Google Scholar 

  9. Milne, A.D., Chess, D.G., Johnson, J.A., King, G.J.: Accuracy of an Electromagnetic Tracking Device: A Study of the Optimal Range and Metal Interference. Journal of biomechanics 29(6), 791–793 (1996)

    Article  Google Scholar 

  10. Banovac, F., Tang, J., Xu, S., Lindisch, D., Chung, H.Y., Levy, E.B., Chang, T., McCullough, M.F., Yaniv, Z., Wood, B.J., Cleary, K.: Precision Targeting of Liver Lesions Using a Novel Electromagnetic Navigation Device in Physiologic Phantom and Swine. Medical physics 32(8), 2698–2705 (2005)

    Article  Google Scholar 

  11. Zhu, X., Xue, Z., Gao, X., Zhu, Y., Wong, S.T.C.: Voles: Vascularity-Oriented Level Set Algorithm for Pulmonary Vessel Segmentation in Image Guided Intervention Therapy. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, Boston, pp. 1247–1250 (2009)

    Google Scholar 

  12. Xue, Z., Wong, K., Wong, S.T.: Joint Registration and Segmentation of Serial Lung Ct Images for Image-Guided Lung Cancer Diagnosis and Therapy. Comput. Med. Imaging Graph. 34(1), 55–60 (2010)

    Article  Google Scholar 

  13. Ayvaci, A., Freedman, D.: Joint Segmentation-Registration of Organs Using Geometric Models. In: IEEE Eng. Med. Biol. Soc., pp. 5251–5254. IEEE Press, New York (2007)

    Google Scholar 

  14. Droske, M., Rumpf, M.: Multiscale Joint Segmentation and Registration of Image Morphology. IEEE transactions on pattern analysis and machine intelligence 29(12), 2181–2194 (2007)

    Article  Google Scholar 

  15. Pohl, K.M., Fisher, J., Grimson, W.E., Kikinis, R., Wells, W.M.: A Bayesian Model for Joint Segmentation and Registration. NeuroImage 31(1), 228–239 (2006)

    Article  Google Scholar 

  16. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast Mr Images. IEEE transactions on medical imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  17. Denton, E.R., Sonoda, L.I., Rueckert, D., Rankin, S.C., Hayes, C., Leach, M.O., Hill, D.L., Hawkes, D.J.: Comparison and Evaluation of Rigid, Affine, and Nonrigid Registration of Breast Mr Images. Journal of computer assisted tomography 23(5), 800–805 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, T. et al. (2010). A Minimally Invasive Multimodality Image-Guided (MIMIG) Molecular Imaging System for Peripheral Lung Cancer Intervention and Diagnosis. In: Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2010. Lecture Notes in Computer Science, vol 6135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13711-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13711-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13710-5

  • Online ISBN: 978-3-642-13711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics