Skip to main content

Faster Parameterized Algorithms for Minor Containment

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour’s theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time \(\mathcal{O}(3^{k^2}\cdot (h+k-1)!\cdot m)\) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J’CTSB 95]. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time \(\mathcal{O}(2^{(2k +1 )\cdot \log k} \cdot h^{2k} \cdot 2^{2h^2} \cdot m)\). Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time \(2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n\), with n = |V(G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster Parameterized Algorithms for Minor Containment (2010), http://users.uoa.gr/~sedthilk/papers/minorch.pdf

  2. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 641–650 (2008)

    Google Scholar 

  3. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoretical Computer Science. Formal Models and Semantics (B), vol. B, pp. 193–242 (1990)

    Google Scholar 

  4. Dawar, A., Grohe, M., Kreutzer, S.: Locally Excluding a Minor. In: Proc. of the 22nd IEEE Symposium on Logic in Computer Science (LICS), pp. 270–279 (2007)

    Google Scholar 

  5. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.-i.: Algorithmic Graph Minor Theory: Decomposition, Approximation, and Coloring. In: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 637–646 (2005)

    Google Scholar 

  6. Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Dorn, F.: Planar Subgraph Isomorphism Revisited. In: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 263–274 (2010)

    Google Scholar 

  8. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. Journal of the ACM 35(3), 727–739 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Hicks, I.V.: Branch decompositions and minor containment. Networks 43(1), 1–9 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kawarabayashi, K.-i., Reed, B.A.: Hadwiger’s conjecture is decidable. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 445–454 (2009)

    Google Scholar 

  13. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees. Discrete Mathematics 108, 143–364 (1992)

    Google Scholar 

  14. Robertson, N., Seymour, P.: Graph Minors. XIII. The Disjoint Paths Problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces. To appear in Proc. of the 37th International Colloquium on Automata, Languages and Programming, ICALP (2010)

    Google Scholar 

  17. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M. (2010). Faster Parameterized Algorithms for Minor Containment. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics