
ar
X

iv
:1

00
3.

01
39

v1
 [

cs
.D

S]
 2

7
Fe

b
20

10

An O(log log n)-Competitive Binary Search Tree with Optimal

Worst-Case Access Times

Prosenjit Bose ∗ Karim Douïeb ∗ Vida Dujmović ∗ Rolf Fagerberg †

Abstract

We present the zipper tree, an O(log logn)-competitive online binary search tree that per-
forms each access in O(log n) worst-case time. This shows that for binary search trees, optimal
worst-case access time and near-optimal amortized access time can be guaranteed simultane-
ously.

1 Introduction

A dictionary is a basic data structure for storing and retrieving information. The binary search
tree (BST) is a well-known and widely used dictionary implementation which combines effi-
ciency with flexibility and adaptability to a large number of purposes. It constitutes one of the
fundamental data structures of computer science.

In the past decades, many BST schemes have been developed which perform element accesses
(and indeed many other operations) in O(log n) time, where n is the number of elements in the
tree. This is the optimal single-operation worst-case access time in a comparison based model.
Turning to sequences of accesses, it is easy to realize that for specific access sequences, there
may be BST algorithms which serve m accesses in less than Θ(m logn) time. A common way
to evaluate how well the performance of a given BST algorithm adapts to individual sequences,
is competitive analysis : For an access sequence X , define OPT(X) to be the minimum time
needed by any BST algorithm to serve it. To make this precise, a more formal definition of a
BST model and of the sequences considered is needed—standard in the area is to use the binary
search tree model (BST model) defined by Wilber [12], in which the only existing non-trivial
lower bounds on OPT(X) have been proven [2, 12]. A given BST algorithm A is then said to
be f(n)-competitive if it performs X in O(f(n)OPT(X)) time for all X .

In 1985, Sleator and Tarjan [10] developed a BST called splay trees, which they conjectured
to be O(1)-competitive. Much of the research on BST’s efficiency on individual input sequences
has grown out of this conjecture. However, despite decades of research, the conjecture is still
open. More generally, it is unknown if there exist asymptotically optimal BST data structures.
In fact, for many years the best known competitive ratio for any BST structure was O(log n),
which is achieved by plain balanced static trees.

This situation was recently improved by Demaine et al., who in a seminal paper [2] developed
a O(log logn)-competitive BST structure, called the tango tree. This was the first improvement
in competitive ratio for BSTs over the trivial O(log n) upper bound.

Being O(log logn)-competitive, tango trees are always at most a factor O(log logn) worse
than OPT(X). On the other hand, they may actually pay this multiplicative overhead
at each access, implying that they have Θ(log log n logn) worst-case access time, and use
Θ(m log logn logn) time on some access sequences of length m. In comparison, any balanced
BST (even static) has O(log n) worst-case access time and spends O(m logn) on every access
sequence.

∗School of Computer Science, Carleton University. The authors are partially supported by NSERC and MRI.
Email: {jit,karim,vida}@cg.scs.carleton.ca.

†Department of Mathematics and Computer Science, University of Southern Denmark. Email: rolf@imada.sdu.dk.

1

http://arxiv.org/abs/1003.0139v1

The problem we consider in this paper is whether it is possible to combine the best of
these bounds—that is, whether an O(log logn)-competitive BST algorithms that performs each
access in optimal O(log n) worst-case time exists. We answer it affirmatively by presenting a
data structure achieving these complexities. It is based on the overall framework of tango trees—
however, where tango trees use red-black trees [6] for storing what is called preferred paths, we
develop a specialized BST representation of the preferred paths, tuned to the purpose. This
representation is the main technical contribution, and its description takes up the bulk of the
paper.

In the journal version of their seminal paper on tango trees, Demaine et al. suggested that
such a structure exists. Specifically, in the further work section, the authors gave a short sketch
of a possible solution. Their suggested approach, however, relies on the existence of a BST
supporting dynamic finger, split and merge in O(log r) worst-case time where r is 1 plus the
rank difference between the accessed element and the previously accessed element. Such a BST
could indeed be used for the auxiliary tree representation of preferred paths. However, the
existence of such a structure (in the BST-model) is an open problem. Consequently, since the
publication of their work, the authors have revised their stance and consider the problem solved
in this paper to be an open problem [7]. Recently, Woo [13] made some progress concerning
the existence of a BST having the dynamic finger property in worst-case. He developed a BST
algorithm satisfying, based on empirical evidence, the dynamic finger property in worst-case.
Unfortunately this BST algorithm does not allow insertion/deletion or split/merge operations,
thus it cannot be used to maintain the preferred paths in a tango tree.

After the publication of the tango tree paper, two other O(log logn)-competitive BSTs have
been introduced by Derryberry et al. [4, 11] and Georgakopoulos [5]. The multi-splay trees [4]
are based on tango trees, but instead of using red-black trees as auxiliary trees, they use splay
trees [10]. As a consequence, multi-splay trees can be shown [4, 11] to satisfy additional
properties, including the scanning and working-set bounds of splay trees, while maintaining
O(log logn)-competitiveness. Georgakopoulos uses the interleave lower bound of Demaine et
al. to develop a variation of splay trees called chain-splay trees that achieves O(log logn)-
competitiveness while not maintaining any balance condition explicitly. However, neither of
these two structures achieves a worst-case single access time of O(log n). A data structure
achieving the same running time as tango trees alongside O(log n) worst-case single access time
was developed by Kujala and Elomaa [8], but this data structure does not adhere to the BST
model (in which the lower bounds on OPT(X) are proved).

The rest of this paper is organized as follows: In Section 2, we formally define the model of
BSTs and the access sequences considered. We state the lower bound on OPT(X) developed
in [2, 12] for analyzing the competitive ratio of BSTs. We also describe the central ideas of
tango trees. In Section 3, we introduce a preliminary data structure called hybrid trees, which
does not fit the BST model proper, but which is helpful in giving the main ideas of our new
BST structure. Finally in Section 4, we develop this structure further to fit the BST model.
This final structure, called zipper trees, is a BST achieving the optimal worst-case access time
while maintaining the O(log logn)-competitiveness property.

2 Preliminaries

2.1 BST Model

In this paper we use the binary search tree model (BST model) defined by Wilber [12], which
is standard in the area. Each node stores a key from a totally ordered universe, and the keys
obey in-order: at any node, all of the keys in its left subtree are less than the key stored in the
node, and all of the keys in its right subtree are greater (we assume no duplicate keys appear).
Each node has three pointers, pointing to its left child, right child, and parent. Each node may

2

keep a constant1 amount of additional information, but no further pointers may be used.
To perform an access, we are given a pointer initialized to the root. An access consists of

moving this pointer from a node to one of its adjacent nodes (through the parent pointer or
one of the children pointers) until it reaches the desired element. Along the way, we are allowed
to update the fields and pointers in any nodes that the pointer touches. The access cost is the
number of nodes touched by the pointer.

As is standard in the area, we only consider sequences consisting of element accesses on a
fixed set S of n elements. In particular, neither unsuccessful searches, nor updates appear.

2.2 Interleave Lower Bound

The interleave bound is a lower bound on the time taken by any binary search tree in the BST
model to perform an access sequence X = {x1, x2, . . . , xm}. The interleave bound was developed
by Demaine et al. [2] and was derived from a previous bound of Wilber [12].

Let P be a static binary search tree of minimum height, built on the set of keys S. We call
P the reference tree. For each node y in P , we consider the accesses X to keys in the nodes
in the subtree of P rooted at y (including y). Each access of this subsequence is then labelled
“left” or “right”, depending on whether the accessed node is in the left subtree of y (including
y), or in its right subtree, respectively. The amount of interleaving through y is the number of
alternations between left and right labels in this subsequence. The interleave bound IB(X) is
the sum of these interleaving amounts over all nodes y in P . The exact statement of the lower
bound from [2] is as follows:

Theorem 1 For any access sequence X, IB(X)/2− n is a lower bound on OPT(X).

2.3 Tango Trees

We outline the main ideas of tango trees [2]. As in the previous section, denote by the reference
tree P a static binary search tree of height O(log n) built on a set of keys S. The preferred child
of an internal node y in P is defined as its left or right child depending on whether the last
access to a node in the subtree rooted at y (including y) was in the left subtree of y (including
y) or in its right subtree respectively. We call a maximal chain of preferred children a preferred
path. The set of preferred paths naturally partitions the elements of S into disjoint subsets of
size O(log n) (see the left part of Figure 1). Remember that P is a static tree, only the preferred
paths may evolve over time (after each access).

The ingenious idea of tango trees is to represent the nodes on a preferred path as a balanced
auxiliary tree of height O(log log n). The tango tree can be seen as a collection of auxiliary
trees linked together. The leaves of an auxiliary tree representing a preferred path p link to the
root of auxiliary trees representing the paths immediately below p in P (see Fig. 1), with the
links uniquely determined by the inorder ordering. The auxiliary tree containing the root of
P constitutes the top-part of the tango tree. In order to distinguish auxiliary trees within the
tango tree, the root of each auxiliary tree is marked (using one bit).

Note that the reference tree P is not an explicit part of the structure, it just helps to explain
and understand the concept of tango trees. When an access is performed, the preferred paths of
P may change. This change is actually a combination of several cut and concatenation operations
involving subpaths. Auxiliary trees in tango tree are implemented as red-black trees [6], and [2]
show how to implement these cut and concatenation operations using standard split and join
operations on red-black tree. Here are the main two operations used to maintain tango trees:

1According to standard conventions, O(log
2
n) bits are considered as constant.

3

B1
B2 B3 C1C2

C3 D1A1

A1

B1

B2

B3

C2

C3

C1

D1

Figure 1: On the left, reference tree P with its preferred paths. On the right, the tango tree
representation of P.

• CUT-TANGO(A, d) – cut the red-black tree A into two red-black trees, one storing the
path of all nodes of depth at most d, and the other storing the path of all nodes of depth
greater than d.

• CONCATENATE-TANGO(A, B) – join two red-black trees that store two disjoint paths
where the bottom of one path (stored in A) is the parent of the top of the other path
(stored in B). So the root of B is attached to a leaf of A.

These operations take O(log k) time for trees of size k using extra information stored in
nodes. As the trees store paths in P , we have k = O(log n). In addition to storing the key value
and the depth in P , each node stores the minimum and maximum depth over the nodes in its
subtree within its auxiliary tree. This additional data can be trivially maintained in red-black
trees with a constant-factor overhead.

Hence, if an access passes i different preferred paths in P , the necessary change in the tango
tree will be O(i) cut and concatenation operations, which is performed in O(i log logn) time.
Over an access sequence X the total number of cut and concatenation operations performed in
P corresponds to the interleave bound O(IB(X)), thus tango tree performs this access sequence
in O(log logn IB(X)) time.

3 Hybrid Trees

In this section, we introduce a data structure called hybrid trees, which has the right running
time, but which does not fit the BST model proper. However, it is helpful intermediate step
which contains the main ideas of our final BST structure.

3.1 Path Representation

For all preferred paths in P , we keep the top Θ(log logn) nodes exactly as they appear on the
path. We call this the top path. The remaining nodes (if any) of the path we store as a red-black
tree, called the bottom tree, which we attach below the top path. Since a preferred path has
size O(log n), this bottom tree has height O(log logn). More precisely, we will maintain the
invariant that a top path has length in [log logn, 3 log logn], unless no bottom tree appears, in
which case the constraint is [0, 3 log logn]. (This latter case, where no bottom tree appears, will
induce simple and obvious variants of the algorithms in the remainder of the paper, variants
which we for clarity of exposition will not mention further.)

4

A hybrid tree consists of all the preferred paths of P , represented as above, linked together
to form one large tree, analogous to tango trees.

The required worst-case search complexity of hybrid trees is captured by the following lemma.

Lemma 1 A hybrid tree T satisfies the following property:

dT (x) = O(dP (x)) ∀x ∈ S,

where dT (x) and dP (x) is defined as the depth of the node x in the tree T and in the reference
tree P , respectively. In particular, T has O(log n) height.

Proof: Consider a preferred path p in P and its representation tree h. The distance, in terms
of number of links to follow, from the root of h to one of its nodes or leaves x is no more than
a constant times the distance between x and the root of p. Indeed, if x is part of the top path,
then the distance to the root of the path by construction is the same in h and p. Otherwise,
this distance increases by at most a constant factor, since h has a height of O(log logn) and the
distance in p is already Ω(log logn).

Since the number of links followed between preferred paths is the same in P and T , the
lemma follows. 2

3.2 Maintaining Hybrid Trees under Accesses

Like in tango trees, the path p traversed in P to reach a desired node may pass through several
preferred paths. During this access the preferred paths in P must change such that p becomes the
new preferred path containing the root. This is performed by cut and concatenate operations
on the preferred paths passed by p. When p leaves a preferred path, this is cut at a depth
corresponding to the depth in P of the point of leave of the preferred path, and the top part
cut out is concatenated with the next preferred path to be traversed.

We note that the algorithm may as well restrict itself to cutting when traversing p, producing
a sequence of cut out parts hanging below each other, which can then be concatenated in one
go at the end, producing the new preferred path starting at the root. We will use this version
below.

In this subsection, we will show how to maintain the hybrid tree representation of the pre-
ferred paths after an access. Our goal is to describe how to perform the operations cut and
concatenate in the following complexities: When the search path passes only the top path of a
preferred path, the cut procedure takes O(k) time, where k is the number of nodes traversed in
the top path. When the search path passes the entire top path and ends up in the bottom tree,
the cut procedure takes O(log logn) time. The concatenation operation, which glues together
all the cut out path representation parts at the end of the access, is bounded by the time used
by the search and the cut operations performed during the access.

Assuming these running times, it follows, by the invariant that all top paths (with bottom
trees below them) have length Θ(log logn), that the time of an access involving i cut operations
in P is bounded both by the number of nodes on the search path p, and by i log logn. By
Lemma 1, this is O(min{logn, i log log n}) time. Hence, we will have achieved optimal worst-
case access time while maintaining O(log logn)-competitiveness.

CUT: Case 1: We only traverse the top path of a path representation. Let k be the number
of nodes traversed in this top path and let x be the last traversed node in this top path.
The cut operation marks the node succeeding x on the top path as the new root of the path
representation, and unmarks the other child of x.

The cut operation now has removed k nodes from the top path of the path representation.
This implies that we possibly have to update the representation, since the Θ(log logn) bound

5

on the size of its top path has to be maintained. Specifically, if the size of the top path drops
below 2 log logn, we will move some nodes from the bottom tree to the top path. The nodes
should be those from the bottom tree having smallest depth (in P), i.e., the next nodes on
the preferred path in P . After a cut of k nodes it is for small k (smaller than log logn) not
clear how to extract the next k nodes from the bottom tree in O(k) time. Instead, we use an
extraction process, described below, which extracts the next log logn nodes from the bottom
tree in O(log logn) steps and run this process incrementally: Whenever further nodes are cut
from the top path, the extraction process is advanced by Θ(k) steps, where k is the number of
nodes cut, and then the process is stopped until the next cut at this path occurs. Thus, the
work of the extraction process is spread over several Case 1 cuts (if not stopped before by a
Case 2 cut, see below). The speed of the process is chosen such that the extraction of log logn
nodes is completed before that number of nodes have been cut away from the top path, hence
it will raise the size of the top path to at least 2 log logn again. In general, we maintain the
additional invariant that the top path has size at least 2 log logn, unless an extraction process
is ongoing. For larger values of k (around log logn), up to two extraction processes (the first of
which could be partly done by a previous access) will be used to ensure this.

Case 2: We traverse the entire top path of path representation A, and enter the bottom tree.
Let x be the last traversed node in A and let y be the marked child of x that is the root of the
next path representation on the search path. First, we finish any pending extraction process in
A, so that its bottom tree becomes a valid red-black tree. Then we rebuild the top path into a
red-black tree in linear time (details appear under the description of concatenate below), and we
join it with the bottom tree using CONCATENATE-TANGO. Then we perform CUT-TANGO(A′,
d) where A′ is the combined red-black tree, and d = dP (y)− 1. After this operation, all nodes
of depth greater than d are removed from the path representation A to form a new red-black
tree B attached to A (the root of B is marked in the process). To make the tree B a valid path
representation, we perform an extraction process twice, which extracts 2 log logn nodes from it
to form a top path. Finally we unmark y. This takes O(log logn) time in total.

CONCATENATE: What is cut out during an access is a sequence of top paths (case 1
cuts) and red-black trees (case 2 cuts) hanging below each other. We have to concatenate this
sequence into one path representation. We first rebuild all sequences of consecutive subpaths
(maximum sequences of nodes which have one marked child) into valid red-black trees, in time
linear in the number of nodes of each sequence (details below). This leaves a sequence of
valid red-black trees hanging below each other. Then we iteratively perform CONCATENATE-
TANGO(A,B), where A is the current highest red-black tree and B is the tree hanging below
A, until there is one remaining red-black tree. Finally we extract 2 log logn nodes from the
obtained red-black tree to construct the top path of the path representation. The time used for
concatenate is bounded by the time used already during the search and cut part of the access.

One way to convert a path of length k into a red-black tree in O(k) time is as follows:
consider each node on the path as a red-black tree of size one. We iteratively perform a series
of CONCATENATE-TANGO(A,B) operations for each pair of red-black trees A followed by B.
After each iteration the number of trees is divided by 2 and their size is doubled, giving a total
time for rebuilding a path into a valid red-black tree of O(

∑log k

i=1 ik/2i) = O(k).

EXTRACT: We now show how to perform the central process of our structure, namely
extracting the next part of a top path from a bottom tree. Specifically, we will extract a
subpath of log logn nodes of minimum depth (in P) from the bottom tree A′ of a given path
representation A, using O(log logn) time.

Let x be the deepest nodes on the top path of A, such that the unmarked child of x cor-
responds to the root of the bottom tree A′. The extraction process will separate the nodes of
depth (in P) smaller than d = dP (x)+ log logn from the bottom tree A′. Let a zig segment of a

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

d

Figure 2: A path, its decomposition into zig (solid regions) and zag (dashed regions) segments, and
its layout in key order.

preferred path p be a maximal sequence of nodes such that each node in the sequence is linked
to its right child in p. A zag segment is defined similarly such that each node on the segment is
linked to its left child (see Fig. 2).

The key observation we exploit is the following: the sequence of all zig segments, ordered by
their depth in the path, followed by the sequence of all reversed zag segments, ordered reversely
by their depth in the path, is equal to the ordering of the nodes in key space (see Fig. 2). This
implies that to extract the nodes of depth smaller than d (in P) from a bottom tree, we can
cut the extreme ends (in key space) of the tree, linearize them to two lists, and then combine
them by a binary merge procedure using depth in P as the ordering. This forms the core of the
extract operation.

We have to do this using rotations, while maintaining a tree at all times. We now give the
details of how to do this, with Fig. 3 illustrating the process.

Using extra fields of each node storing the minimum and maximum depth value (in P) of
nodes inside its subtree, we can find the node ℓ′ of minimum key value that has a depth greater
than d in O(log logn) time, by starting at the root of A′ and repeatedly walking to the leftmost
child whose subtree has a node of depth greater than d. Then define ℓ as the predecessor of ℓ′.
Symmetrically, we can find the node r′ of maximum key value that has depth greater than d
and define r as the successor of r′.

First we split A′ at ℓ to obtain two subtrees B and C linked to the new root ℓ where B
contains a first sequence of nodes at depth smaller than d. Then we split C at r to obtain the
subtrees D and E where E contains a second sequence of nodes at depth smaller than d.

In O(log logn) time we convert the subtrees B and E into paths corresponding to an ordered
sequences of zig segments for B and zag segments for E. To do so we perform a left rotation at
the root of B until its right subtree is a leaf (i.e., when its right child is a marked node). Then
we repeat the following: if the left child of the root has no right child the we perform a right

7

ℓ
r

ℓ

r

ℓ

r

ℓ

r

ℓ

r

A
′

B C

D E

B

D

D

B

E

(a) (b) (c) (d) (e)

Figure 3: (a) Tree A′. (b) Split A′ at ℓ. (c) Split C at r. (d) Convert the subtrees B and E into
paths. (e) Zip the paths B and E.

rotation at the root of B (adding one more node to right spine, which will constitute the final
path). Otherwise we perform a left rotation at the left child of the root of B, moving its right
subtree into the left spine. This process takes a time linear in the size of B, since each node
is involved in a rotation at most 3 times (once a node enters the left spine, it can only leave it
by being added to the right spine). A symmetric process is performed to convert the subtree E
into a path.

The last operation, called a zip, merges (in term of depths in P) the two paths B and E,
in order to form the next part of the top path. We repeatedly select the root of B or E that
has the smallest depth in the tree P . The selected root is brought to the bottom of the top
path using O(1) rotations. The zip operation stops when the subtrees B and E are both empty.
Eventually, we perform a left rotation at the node ℓ if needed, i.e., if r has a smaller depth in P
than ℓ.

The time taken is linear in the extracted number of nodes, i.e, log logn. The process consists
of a series of rotations, hence can stopped and resumed without problems.

Therefore, the discussion presented in this section allows us to conclude with the following
theorem.

Theorem 2 Our hybrid tree data structure is O(log logn)-competitive and performs each access
in O(log n) worst-case time.

3.3 Hybrid Trees and the BST Model

We specify in the description of the cut operation (more precisely, in case 1) that the extraction
process is executed incrementally, i.e., the work is spread over several cut operations. In order
to efficiently revive an extraction process which has been stopped at some point in the past,
we have to return to the position where its next rotation should take place. This location is
unique for each path representation, and is always in its bottom tree. Thus, traversing its top
path to reach the bottom tree would be too costly for the analysis of case 1. Instead, we store
in the marked node (the first node of the top path) appropriate information on the state of the
process. Additionally, we store an extra pointer pointing to the node where the next rotation in
the process should take place. This allows us to revive an extraction process in constant time.
Unfortunately, the structure so obtained is not in the BST model (see Section 2.1), due to the

8

extra pointer. In the next section we show how to further develop the idea from this section
into a data structure fitting the BST model.

Still, we note that the structure of this section can be implemented in the comparison based
model on a pointer machine, with access sequences X being served in O(log lognOPT(X)) time,
and each access taking O(log n) time worst-case.

4 Zipper Trees

The data structure described in the previous section is a BST, except that each marked node
has an extra pointer facilitating constant time access to the point in the path representation
where an extraction process should be revived. In this section, we show how to get rid of this
extra pointer and obtain a data structure with the same complexity bounds, but now fitting
the BST model described in Section 2.1. To do so, we develop a more involved version of
the representation of preferred paths and the operations on them. The goal of this new path
representation is to ensure that all rotations of an extraction process are located within distance
O(1) of the root of the tree of the representation. The two main ideas involved are: 1) storing
the top path as lists, hanging to the sides of the root, from which the top path can be generated
incrementally by merging as it is traversed during access, and 2) using a version of the split
operations that only does rotations near the root. The time complexity analysis follows that of
hybrid trees, and will not be repeated.

4.1 Path Representation

For all preferred paths in P we decompose its highest part into two sequences, containing its
zig and its zag segments, respectively. These are stored as two paths of nodes, of increasing
and decreasing key values, respectively. As seen in Section 3.2 (cf. Fig. 2), both will be ordered
by their depth in P . Let ℓ and r be the highest node in the zig and zag sequence respectively.
The node ℓ will be the root of the auxiliary tree (the marked node). The remainder of the zig
sequence is the left subtree of ℓ, r is its right child, and the remainder of the zag sequence is the
right subtree of r. We call this upper part of the tree a zipper. We repeat this decomposition
once again for the next part of the path to obtain another zipper which is the left subtree
of r. Finally the remaining of the nodes on the path are stored as a red-black tree of height
O(log logn), hanging below the lowest zipper. Fig. 4 illustrates the construction. The two
zippers constitute the top path, and the red-black tree the bottom tree. Note that the root of
the bottom tree is reachable in O(1) time from the root of the path representation. We will
maintain the invariant that individually, the two zippers contain at most log logn nodes each,
while (if the bottom treeis non-empty) they combined contain at least (log logn)/2 nodes.

A zipper tree consists of all the preferred paths of P , represented as above, linked together
to form one large tree.

4.2 Maintaining Zipper Trees under Accesses

We now give the differences, relative to Section 3.2, of the operations during an access.

CUT: When searching a path representation, we incrementally perform a zip operation (i.e.,
a merge based on depth order) on the top zipper, until it outputs either the node searched for,
or a node that leads to the next path representation. If the top zipper gets exhausted, the
lower zipper becomes the upper zipper, and an incremental creation of a new lower zipper by
an extraction operation on the bottom tree is initiated (during which the lower zipper is defined
to have size zero). Each time one more node from the top zipper is being output (during the
current access, or during a later access passing through this path representation), the extraction

9

ℓ

r

Figure 4: The path representation in zipper trees.

advances Θ(1) steps. The speed of the extraction process is chosen such that it finishes with
log logn nodes extracted before (log log n)/2 nodes have been output from the top zipper. The
new nodes will make up a fresh lower zipper, thereby maintaining the invariant.

If the access through a path representation overlaps (in time) at most one extraction process
(either initiated by itself or by a previous access), it is defined as a case 1 cut. No further actions
takes place, besides the proper remarkings of roots of path representations, as in Section 3.2. If
a second extraction process is about to be initiated during an access, we know that Θ(log logn)
nodes have been passed in this path representation, and we define it as a case 2 cut. Like in
Section 3.2 this now ends by converting the path representation to a red-black tree, cutting it like
in tango trees, and then converting the red-black tree remaining into a valid path representation
(as defined in the current section), all in Θ(log logn) time.

CONCATENATE: There is no change from Section 3.2, except that the final path repre-
sentation produced is as defined in the current section.

EXTRACT: The change from Section 3.2 is that the final zip operation is not performed
(the process stops at step (d) in Fig. 3), and that we must use a search and a split operation
on red-black trees where all structural changes consist of rotations a distance O(1) from the
root2 (of the bottom tree, which is itself at a distance O(1) from the root of the zipper tree).
Such a split operation is described in the appendix (Part I). Note that searching takes place
incrementally as part of the split procedure.

5 Conclusion

The main goal in this area of research is to improve the competitive ratio of O(log logn). Here we
have been able to tighten other bounds, namely the worst-case search time. We think this result

2As no actual details of the split operation used are given in [2], we do not know whether their split operation
fulfills this requirement. It is crucial for our construction that such a split operation is possible, so we describe one
solution here.

10

helps providing a better understanding of competitive BSTs. It could be that competitiveness is
in conflict with balance maintenance, i.e., an O(1)-competitive binary search tree could possibly
not guarantee an O(log n) worst-case search time. For instance splay-tree [10] and GreedyFuture
tree [9, 3], the two BSTs that are conjectured to be dynamically optimal, do not guarantee
optimal worst-case search time. Thus even if dynamically optimal trees exist, our result could
still be a good alternative with optimal worst-case performance.

We also think that the ideas developed to achieve our result have their own interest. They
can be used to improve the worst-case performance of a data structure while maintaining the
same amortized performance. For example we show in the appendix (Part II) how to adapt
them in order to improve the worst-case running time of the multipop operation on a stack.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001. Section 10.1: Stacks and queues, pages 200–204.

[2] E. Demaine, D. Harmon, J. Iacono, and M. Pătraşcu. Dynamic optimality—almost.
SICOMP, 37(1):240–251, 2007. Also in Proc. FOCS 2004.

[3] E. D. Demaine, D. Harmon, J. Iacono, D. M. Kane, and M. Patrascu. The geometry of
binary search trees. In Proc. of the 10th ACM-SIAM Symp. on Disc. Alg. (SODA), pages
496–505, 2009.

[4] J. Derryberry, D. D. Sleator, and C. C. Wang. O(log logn)-competitive dynamic binary
search trees. In Proc. of the 7th ACM-SIAM Symp. on Disc. Alg. (SODA), pages 374–383,
2006.

[5] G. F. Georgakopoulos. Chain-splay trees, or, how to achieve and prove loglogn-
competitiveness by splaying. Inf. Process. Lett., 106(1):37–43, 2008.

[6] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Proc. of
the 19th Found. of Comp. Sci. (FOCS), pages 8–21, 1978.

[7] J. Iacono. Personal communication, July 2009.

[8] J. Kujala and T. Elomaa. Poketree: A dynamically competitive data structure with good
worst-case performance. In Proc. ISAAC 2006, volume 4288 of LNCS, pages 277–288, 2006.

[9] J. I. Munro. On the competitiveness of linear search. In Proc. of the 8th Annual European
Symposium (ESA), volume 1879 of LNCS, pages 338–345, 2000.

[10] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–686,
1985.

[11] C. C. Wang. Multi-Splay Trees. PhD thesis, Computer Science Department, School of
Computer Science, Carnegie Mellon University, 2006.

[12] R. Wilber. Lower bounds for accessing binary search trees with rotations. SICOMP,
18(1):56–67, 1989.

[13] S. L. Woo. Heterogeneous Decomposition of Degree-Balanced Search Trees and Its Applica-
tions. PhD thesis, Computer Science Department, School of Computer Science, Carnegie
Mellon University, 2009.

11

APPENDIX

Part I

We present the split operation on red-black trees where all structural changes consist of rotations
a distance O(1) from the root.The end result should be a tree where the root is the node x split
on, with a left child that is a red-black tree on the nodes smaller than x, and a right child that
is a red-black tree on the nodes larger than x. Red-black trees are binarized (2,4)-trees, i.e.,
multi-way nodes are substituted by small, perfectly balanced binary search trees, with the color
annotation keeping track of the boundaries between them. For ease of exposition, we describe
the split process partly in (2,4)-tree terms.

The overall idea of a normal split operation on (2,4)-trees is to follow the search path to-
wards x and cleave (2,4)-tree nodes passed, then later glue the two parts of cleaved nodes (now
maybe of too low degree) to their level-wise siblings (now maybe of too high degree), and then
split (in the sense of rebalancing of (2,4)-nodes) these if necessary. By cleaving a (2,4)-node,
we mean dividing the keys (here, binary nodes) inside the (2,4)-node, and the subtrees of the
(2,4)-node, into two parts, based on whether they order-wise are smaller or larger than x.

Normally, cleaving is top-down, and gluing and splitting is bottom-up. However, to keep
the working point, where the rotations take place, fixed at the root—and maintain a BST at all
times—we instead fold the two sides of the cleaved path around during searching-and-cleaving
(treating each side of the cleaved path sort of as a rope in a pulley, the pulleys being the working
point), while keeping track of heights (in (2,4)-tree terms) of subtrees. Later, the gluing process
is done in a reverse action (running the ropes the other way), while making use of the heights
of subtrees.

We now describe the details of the cleaving process. We assume wlog. that the search path
initially proceeds to the left child of the root (the other case being symmetric). During the
cleaving process, we maintain the following shape of the binary tree: Let P be the search path
of the initial red-black tree traversed so far, and let P(2,4) be the (2,4)-nodes touched by P . The
top of the right spine (including the root) consists of the binary nodes in P(2,4) whose keys are
larger than x. The subtrees hanging from these nodes are the subtrees of P(2,4) which are larger
than x. The top of the left spine (excluding the root) consists of the binary nodes in P(2,4)

whose keys are smaller than x. The subtrees hanging from these nodes are the subtrees of P(2,4)

which are smaller than x, except for the topmost of the subtrees, which is the remaining part
of the initial tree. See Fig. 5.

Advancing the cleaving process by one more (2,4)-node of the search path means rebuilding
a subtree consisting of at most the root, its left child, and the up to three binary nodes of the
next (2,4)-node. This rebuilding can be done in O(1) rotations on these nodes. The cleaving
process ends when the (2,4)-node containing x is the next such node, with a final rebuilding
which brings x up as root.

We now need to change both subtrees of the root into valid red-black trees. This will be
done in a downwards fashion, one spine at a time. We describe the process for one spine.

The heights, as (2,4)-trees, of the subtrees hanging from the top of the spine are increasing
when going downwards. There are initially between zero and three subtrees of each height. For
sake of induction, we assume there are between zero and five subtrees of each height. If there
are at least two subtrees of the next height h, one or two (2,4)-nodes of height h+ 1, hanging
from the spine, are formed by rotations on the top nodes of the spine. These nodes will take
part in the next group of (2,4)-nodes of heights h + 1, and the process continues with these.
Otherwise, there is at most one subtree of height h, and we will look to the next non-empty
group of subtrees (of height h + k for some k > 0) hanging from the spine. Of these subtrees,
all valid (2,4)-trees, we fold the top-most one around its root: the binary nodes in its (2,4)-tree
root are moved onto the spine using rotations, making its (2,4)-tree subtrees hang from the

12

h h h

h− 1

h− 1

h− 2
h− 2h− 2

h− 3

h− 3 h− 3

h

h h

h− 1

h− 1

h− 2
h− 2h− 2

h− 3

h− 3 h− 3

h

h h

h− 1 h− 1

h− 2
h− 2h− 2

h− 3

h− 3 h− 3

h

h h

h− 1 h− 1

h− 2

h− 2

h− 2

h− 3

h− 3 h− 3

h

h h
h− 1 h− 1

h− 2 h− 2

h− 2

h− 3

h− 3

h− 3

(a) (b) (c)

(d) (e)

Figure 5: A split operation (first half of the operation) using rotations close to the root. Rounded
boxes delineate (2, 4)-nodes, values h, h− 1, etc., designate subtrees of that (2, 4)-tree height. The
thick line is the search path, ending at the circled node.

13

spine. This is repeated k times, which leaves hanging from the spine between one and three
new subtrees of height h+ k − i, for i = 1 . . . k − 1, and between two and four new subtrees of
height h, at the cost of O(k) rotations. There are now at least two subtrees of height h hanging
from the spine, and the process continues with these. By induction, there will never be more
than five trees of any size during this process, and we will end up with a legal (2,4)-tree, hence
a legal red-black tree.

The total time of the split is bounded by the height of the initial tree.

Part II: Stack with Improved Multipop Operation

A stack [1] is a fundamental data structure that asks for the following operations:

• PUSH(x) – insert the element x on the top of the stack.

• POP() – delete the element from the top of the stack if it is not empty.

• MULTIPOP(k) – deletes k elements from the top of the stack, or deletes all elements if the
stack has less than k elements.

In a pointer machine, a stack is usually implemented as a simple linked list. The operation
PUSH(x) creates an element with value x and insert it as the new head of the list. The operation
POP() removes the head of the list if this one is not empty. The operation MULTIPOP(k) is
performed using k times the POP() operation.

Over a sequence of stack operations the amortized cost of each operation is O(1) since an
element that has been pushed on the stack can only be popped once from it. Concerning the
worst-case performance of the operations it is clear that PUSH(x) and POP() take O(1) wost-case
time whereas MULTIPOP(k) takes O(k) worst-case time. Thus the worst-case running time of
this operation can reach O(n) if k ≥ n where n is the number of elements in the stack. Here we
develop a stack that improves the running time of MULTIPOP().

The structure is composed of two parts: first a linked list L of size Θ(logn) that contains the
most recently pushed elements (as in the original structure) and secondly a red-black tree [6]
T containing the remaining elements. Each element x in the stack has a height h(x) which is
defined as the number of elements that were in the stack before x was pushed in. The tree T
is ordered based on the height of the elements so that the elements in the left (or the right)
subtree of an element x have a smaller (or greater) height than h(x). The size |T | of the tree is
stored at its root.

The stack operations PUSH(x) and POP() (MULTIPOP() is considered later) are essentially
performed as in the standard structure. They either add a new head element to the list L
or remove it. Thus L is modified and the invariant about its size has to be maintained, i.e.,
|L| = Θ(logn). More specifically we maintain logn ≤ |L| ≤ 5 logn. In order to do so we
use an extraction and a contraction process, described below, which transfer logn elements
from the tree into the list or from the list into the tree, respectively, in O(log n) steps. These
processes run incrementally: Whenever an element is popped/pushed from the list, the ongoing
extraction/contraction process is advanced by Θ(1) steps and then the process is suspended
until the next operation occurs. Thus the work of an extraction/contraction process is spread
over several operations (if not stopped before by a specific kind of MULTIPOP() operation, see
below) which means that PUSH(x) and POP() still take O(1) worst-case time. The speed of the
process is chosen such that the extraction/contraction of logn elements is completed before logn
push/pop operations have been performed. Whenever |L| reaches 4 logn a contraction process
is launched and when |L| reaches 2 logn an extraction process is launched. Hence there is no
more than one extraction/contraction process running at the same time and the size of the list
is always maintained between logn and 5 logn.

The operation MULTIPOP(k) is performed in the following way: if k ≤ logn then we perform
k times the POP() operation which takes O(k) worst-case time. Otherwise we finish any pending

14

extraction/contraction process in the stack. We perform O(1) contraction processes until all the
elements are contained in the tree T . Then we binary search in T for the element x with
h(x) = |T | − k and we perform a cut of the tree at the element x using the standard cut
operation of red-black trees [6]. The tree containing the k highest elements of the stack is
discarded. Finally we perform three extraction processes so that the stack satisfies the invariant.
This takes O(log n) worst-case time in total.

We present the extraction and the contraction process mentioned in the previous description:

EXTRACT() is the operation that transfers the logn highest elements from the red-black
tree into the linked list in O(log n) time. It first binary searches in T the element x with
h(x) = |T |− logn. Once x is found, the tree T is split at x using the standard split operation of
red-black trees [6]. The extracted tree containing the highest elements is converted in a linked
list in O(log n) time and finally attached to the end of the list of the stack.

CONTRACT() is the operation that performs the inverse of EXTRACT() with the same running
time. It transfers the set S of the logn lowest elements from the linked list into the red-black
tree in O(log n) time. The operation performs a walk along the list to find the position of the
first element of S, then the list is cut at this precise point. The sublist containing the elements
of S is converted into a red-black tree in O(|S|) = O(log n) time. Finally the newly obtained
tree is joined, in O(log n), with the red-black tree of the stack.

Theorem 3 A stack can be implemented such that the operations PUSH() and POP() take O(1)
wost-case time and the operation MULTIPOP(k) takes O(min{k, logn}) worst-case time. All
these operations take O(1) amortized time.

15

	1 Introduction
	2 Preliminaries
	2.1 BST Model
	2.2 Interleave Lower Bound
	2.3 Tango Trees

	3 Hybrid Trees
	3.1 Path Representation
	3.2 Maintaining Hybrid Trees under Accesses
	3.3 Hybrid Trees and the BST Model

	4 Zipper Trees
	4.1 Path Representation
	4.2 Maintaining Zipper Trees under Accesses

	5 Conclusion

