Skip to main content

An O(log log n)-Competitive Binary Search Tree with Optimal Worst-Case Access Times

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

We present the zipper tree, an O(log log n)-competitive online binary search tree that performs each access in O(logn) worst-case time. This shows that for binary search trees, optimal worst-case access time and near-optimal amortized access time can be guaranteed simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bose, P., Douïeb, K., Dujmović, V., Fagerberg, R.: An O(loglog n)-competitive binary search tree with optimal worst-case access times, arXiv 1003.0139 (2010)

    Google Scholar 

  2. Demaine, E., Harmon, D., Iacono, J., Kane, D.M., Patrascu, M.: The geometry of binary search trees. In: Proc. of the 10th ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 496–505 (2009)

    Google Scholar 

  3. Demaine, E., Harmon, D., Iacono, J., Pătraşcu, M.: Dynamic optimality—almost. SICOMP 37(1), 240–251 (2007)

    MATH  Google Scholar 

  4. Derryberry, J., Sleator, D.D., Wang, C.C.: O(loglogn)-competitive dynamic binary search trees. In: Proc. of the 7th ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 374–383 (2006)

    Google Scholar 

  5. Georgakopoulos, G.F.: Chain-splay trees, or, how to achieve and prove loglogn-competitiveness by splaying. Inf. Process. Lett. 106(1), 37–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proc. of the 19th Found. of Comp. Sci. (FOCS), pp. 8–21 (1978)

    Google Scholar 

  7. Iacono, J.: Personal communication (July 2009)

    Google Scholar 

  8. Kujala, J., Elomaa, T.: Poketree: A dynamically competitive data structure with good worst-case performance. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 277–288. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, C.C.: Multi-Splay Trees. PhD thesis, Computer Science Department, School of Computer Science, Carnegie Mellon University (2006)

    Google Scholar 

  12. Wilber, R.: Lower bounds for accessing binary search trees with rotations. SICOMP 18(1), 56–67 (1989)

    MATH  MathSciNet  Google Scholar 

  13. Woo, S.L.: Heterogeneous Decomposition of Degree-Balanced Search Trees and Its Applications. PhD thesis, Computer Science Department, School of Computer Science, Carnegie Mellon University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bose, P., Douïeb, K., Dujmović, V., Fagerberg, R. (2010). An O(log log n)-Competitive Binary Search Tree with Optimal Worst-Case Access Times. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics