Skip to main content

Multivariate Discretization for Associative Classification in a Sparse Data Application Domain

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

  • 1507 Accesses

Abstract

Associative classification is becoming a promising alternative to classical machine learning algorithms. It is a hybrid technique that combines supervised and unsupervised data mining algorithms and builds classifiers from association rules’ models. The aim of this work is to apply these associative classifiers to improve estimation precision in the project management area where data sparsity involves a major drawback. Moreover, in this application domain, most of the attributes are continuous; therefore, they must be discretized before generating the rules. The discretization procedure has a significant effect on the quality of the induced rules as well as on the precision of the classifiers built from them. In this paper, a multivariate supervised discretization method is proposed, which takes into account the predictive purpose of the association rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in large databases. In: Proc. of ACM SIGMOD Int. Conference on Management of Data, Washinton, DC, pp. 207–216 (1993)

    Google Scholar 

  2. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. Journal of Intelligent Information Systems 20(3), 255–283 (2003)

    Article  Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Dolado, J.J.: A validation of the component-based method for software size estimation. IEEE Transactions on Software Engineering 26(10), 1006–1021 (2000)

    Article  Google Scholar 

  5. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous valued attributes for classification learning. In: Proc. of the Thirteenth International Joint Conference on Articial Intelligence, IJCAI 1993, Chambery, France, pp. 1022–1027 (1993)

    Google Scholar 

  6. Li, W., Han, J., Pei, J.: CMAR. Accurate and efficient classification based on multiple class-association rules. In: Proc. of the IEEE International Conference on Data Mining (ICDM 2001), California, pp. 369–376 (2001)

    Google Scholar 

  7. Lian, W., Cheung, D.W., Yiu, S.M.: An efficient algorithm for dense regions discovery from large-scale data streams. Computers & Mathematics with Applications 50, 471–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, B., Hsu, W., Ma, Y.: Integration classification and association rule mining. In: Proc. of 4th Int. Conference on Knowledge Discovery and Data Mining, New York, pp. 80–86 (1998)

    Google Scholar 

  9. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization. An enabling technique. Data Mining and Knowledge Discovery 6, 393–423 (2002)

    Article  Google Scholar 

  10. Mineset user’s guide, v. 007-3214-004, 5/98, Silicon Graphics (1998)

    Google Scholar 

  11. Moreno, M.N., García, F.J., Polo, M.J.: Mining interesting association rules for Prediction in the Software Project Management Area. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 341–350. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Moreno, M.N., Miguel, L.A., García, F.J., Polo, M.J.: Building knowledge discovery-driven models for decision support in project management. Decision Support Systems 38(2), 305–317 (2004)

    Article  Google Scholar 

  13. Moreno, M.N., Ramos, I., García, F.J., Toro, M.: An association rule mining method for estimating the impact of project management policies on software quality, development time and effort. Expert Systems with Applications 34(2), 522–529 (2008)

    Article  Google Scholar 

  14. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: Proc. of ACM SIGMOD Conference, Montreal, Canada, pp. 1–12 (1996)

    Google Scholar 

  15. Thabtah, F., Cowling, P., Peng, Y.: MCAR: multi-class classification based on association rule. In: Proc. of the International Conference on Computer Systems and Applications (AICCSA 2005), Washington, USA, p. 33-I. IEEE, Los Alamitos (2005)

    Google Scholar 

  16. Verlinde, H., De Cock, M., Boute, R.: Fuzzy versus quantitative association rules. A fair data-driven comparison. IEEE Transactions on Systems, Man, and Cybernetics - Part B. Cybernetics 36, 679–684 (2006)

    Article  Google Scholar 

  17. Wang, Y., Xin, Q., Coenen, F.: A novel rule ordering approach in classification association rule mining. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 339–348. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Wolpert, D.H.: Stacked Generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  19. Yin, X., Han, J.: CPAR. Classification based on predictive association rules. In: Proc. of SIAM International Conference on Data Mining (SDM 2003), pp. 331–335 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García, M.N.M., Lucas, J.P., Batista, V.F.L., Martín, M.J.P. (2010). Multivariate Discretization for Associative Classification in a Sparse Data Application Domain. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics