Skip to main content

Prediction of Bladder Cancer Recurrences Using Artificial Neural Networks

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Abstract

Even if considerable advances have been made in the field of early diagnosis, there is no simple, cheap and non-invasive method that can be applied to the clinical monitorisation of bladder cancer patients. Moreover, bladder cancer recurrences or the reappearance of the tumour after its surgical resection cannot be predicted in the current clinical setting. In this study, Artificial Neural Networks (ANN) were used to assess how different combinations of classical clinical parameters (stage-grade and age) and two urinary markers (growth factor and pro-inflammatory mediator) could predict post surgical recurrences in bladder cancer patients. Different ANN methods, input parameter combinations and recurrence related output variables were used and the resulting positive and negative prediction rates compared. MultiLayer Perceptron (MLP) was selected as the most predictive model and urinary markers showed the highest sensitivity, predicting correctly 50% of the patients that would recur in a 2 year follow-up period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Parkin, M., Bray, F., Ferlay, J., Pisani, P.: Global Cancer Statistics 2002. CA Cancer J. Clin. 55, 74–108 (2005)

    Article  Google Scholar 

  2. Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18(3), 581–592 (2007)

    Article  Google Scholar 

  3. Johansson, S.L., Cohen, S.M.: Epidemiology and etiology of bladder cancer. Semin. Surg. Oncol. 13(5), 291–298 (1997)

    Article  Google Scholar 

  4. Epstein, J.I., Amin, M.B., Reuter, V.R., Mostofi, F.K.: The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am. J. Surg. Pathol. 22(12), 1435–1448 (1998)

    Article  Google Scholar 

  5. Kirkali, Z., Chan, T., Manoharan, M., Algaba, F., Busch, C., Cheng, L., Kiemeney, L., Kriegmair, M., Montironi, R., Murphy, W.M., Sesterhenn, I.A., Tachibana, M., Weider, J.: Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66(6 Suppl. 1), 4–34 (2005)

    Article  Google Scholar 

  6. Heney, N.M.: Natural history of superficial bladder cancer: prognostic features and longterm disease course. Urol. Clin. North Am. 19, 429–433 (1992)

    Google Scholar 

  7. Shelley, M., Mason, M.D., Kynaston, H.: Intravesical therapy for superficial bladder cancer: A systematic review of randomised trials and meta-analyses. Cancer Treat. Rev (2010) (in press), doi:10.1016/j.ctrv.2009.12.005

    Google Scholar 

  8. Sharma, S., Ksheersagar, P., Sharma, P.: Diagnosis and treatment of bladder cancer. Am. Fam. Physician 80(7), 717–723 (2009)

    Google Scholar 

  9. Herman, M.P., Svatek, R.S., Lotan, Y., Karakiewizc, P.I., Shariat, S.F.: Urine-based biomarkers for the early detection and surveillance of non-muscle invasive bladder cancer. Minerva Urol. Nefrol. 60(4), 217–235 (2008)

    Google Scholar 

  10. Agatonovic-Kustrin, S., Beresford, R.: Review, Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000)

    Article  Google Scholar 

  11. Lin, C.C., Wang, Y.C., Chen, J.Y., Liou, Y.J., Bai, Y.M., Lai, I.C., Chen, T.T., Chiu, H.W., Li, Y.C.: Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data Comput. Methods Programs Biomed. 91(2), 91–99 (2008)

    Article  Google Scholar 

  12. Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zulueta Guerrero, E. et al. (2010). Prediction of Bladder Cancer Recurrences Using Artificial Neural Networks. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics