Skip to main content

Graph-Based Model-Selection Framework for Large Ensembles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Abstract

The intuition behind ensembles is that different prediciton models compensate each other’s errors if one combines them in an appropriate way. In case of large ensembles a lot of different prediction models are available. However, many of them may share similar error characteristics, which highly depress the compensation effect. Thus the selection of an appropriate subset of models is crucial. In this paper, we address this problem. As major contribution, for the case if a large number of models is present, we propose a graph-based framework for model selection while paying special attention to the interaction effect of models. In this framework, we introduce four ensemble techniques and compare them to the state-of-the-art in experiments on publicly available real-world data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacauskiene, M., Verikas, A., Gelzinis, A., Valincius, D.: A feature selection technique for generation of classification committees and its application to categorization of laryngeal images. Pattern Recognition 42, 645–654 (2009)

    Article  Google Scholar 

  2. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36(6), 1291–1302 (2003)

    Article  MATH  Google Scholar 

  3. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  5. Li, G.-Z., Liu, T.-Y.: Feature selection for bagging of support vector machines. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 271–277. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Peng, Y.: A novel ensemble machine learning for robust microarray data classification. Computers in Biology and Medicine 36(6), 553–573 (2006)

    Article  Google Scholar 

  7. Preisach, C., Schmidt-Thieme, L.: Ensembles of relational classifiers. Knowl. Inf. Syst. 14, 249–272 (2008)

    Article  MATH  Google Scholar 

  8. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification (2003)

    Google Scholar 

  9. Ting, K.M., Witten, I.H.: Stacked generalization: when does it work? In: Int’l. Joint Conf. on Artificial Intelligence, pp. 866–871. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  10. Tsymbal, A., Patterson, D.W., Puuronen, S.: Ensemble feature selection with simple bayesian classification. Inf. Fusion 4, 87–100 (2003)

    Article  Google Scholar 

  11. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: Aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  12. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  13. Yang, Y., et al.: To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators. IEEE Trans. on Knowledge and Data Engineering 19, 1652–1665 (2007)

    Article  Google Scholar 

  14. Zhou, Z.-H., Wu, J., Tang, W., Zhou, Z.h., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buza, K., Nanopoulos, A., Schmidt-Thieme, L. (2010). Graph-Based Model-Selection Framework for Large Ensembles. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics