Skip to main content

Application of Mixture of Experts to Construct Real Estate Appraisal Models

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

Abstract

Several experiments were conducted in order to investigate the usefulness of mixture of experts (ME) approach to an online internet system assisting in real estate appraisal. All experiments were performed using 28 real-world datasets composed of data taken from a cadastral system and GIS data derived from a cadastral map. The analysis of the results was performed using recently proposed statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple 1×n and n×n comparisons. GLM (general linear model) architectures of mixture of experts achieved better results for ME with an adaptive variance parameter for each expert, whereas MLP (multilayer perceptron) architectures - for standard mixtures of experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá-Fdez, J., et al.: KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems. Soft Computing 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11(2), 483–497 (1999)

    Article  Google Scholar 

  3. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Caragea, C., Sinapov, J., Dobbs, D., Honavar, V.: Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling. BMC Bioinformatics 10(Suppl. 4), S4 (2009)

    Article  Google Scholar 

  5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ebrahimpour, R., Kabir, E., Esteky, H., Yousefi, M.R.: View-independent face recognition with Mixture of Experts. Neurocomputing 71, 1103–1107 (2008)

    Article  MATH  Google Scholar 

  7. Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. García, S., Herrera, F.: An Extension on Statistical Comparisons of Classifiers over Multiple Data Sets for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  9. Goodband, J.H., Haas, O.C.L., Mills, J.A.: A mixture of experts committee machine to design compensators for intensity modulated radiation therapy. Pattern Recog. 39, 1704–1714 (2006)

    Article  MATH  Google Scholar 

  10. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 340–350. Springer, Heidelberg (2010)

    Google Scholar 

  11. Güler, I., Übeyli, E.D.: A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence 18, 845–856 (2005)

    Article  Google Scholar 

  12. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  13. Hashem, S.: Optimal linear combinations of neural networks. Neural Net. 10(4), 599–614 (1997)

    Article  Google Scholar 

  14. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  15. Jianping, D., Bouchard, M., Yeap, T.H.: Linear Dynamic Models With Mixture of Experts Architecture for Recognition of Speech Under Additive Noise Conditions. IEEE Signal Processing Letters 13(9), 573–576 (2006)

    Article  Google Scholar 

  16. Jordan, M.I., Jacobs, R.A.: Hierachical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)

    Article  Google Scholar 

  17. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Inf. Proc. Systems, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  18. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Google Scholar 

  19. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification. Information Sciences 177(10), 2049–2074 (2007)

    Article  Google Scholar 

  22. Luengo, J., García, S., Herrera, F.: A Study on the Use of Statistical Tests for Experimentation with Neural Networks: Analysis of Parametric Test Conditions and Non-Parametric Tests. Expert Systems with Applications 36, 7798–7808 (2009)

    Article  Google Scholar 

  23. Mitchell, H.B.: Multi-Sensor Fusion: An Introduction. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  24. Moerland, P.: Some methods for training mixtures of experts, Technical Report IDIAP-Com 97-05, IDIAP Research Institute (1997)

    Google Scholar 

  25. Ng, S.K., McLachlan, G.J.: Extension of Mixture-of-experts networks for binary classification of hierachical data. Artificial Intelligence in Medicine 41, 51–67 (2007)

    Article  Google Scholar 

  26. Polikar, R.: Ensemble Learning. Scholarpedia 4(1), 2776 (2009)

    Article  Google Scholar 

  27. Rahman, A.F.R., Fairhurst, M.C.: A new hybrid approach in combining multiple experts to recognize handwritten numerals. Pattern Recognition Letters 18(8), 781–790 (1997)

    Article  Google Scholar 

  28. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33, 1–39 (2010)

    Article  Google Scholar 

  29. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5(2), 197–227 (1990)

    Google Scholar 

  30. Srivastava, A.N., Su, R., Weigend, A.S.: Data mining for features using scale-sensitive gated experts. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1268–1279 (1999)

    Article  Google Scholar 

  31. Wolpert, D.H.: Stacked Generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graczyk, M., Lasota, T., Telec, Z., Trawiński, B. (2010). Application of Mixture of Experts to Construct Real Estate Appraisal Models. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics