Abstract
Several experiments were conducted in order to investigate the usefulness of mixture of experts (ME) approach to an online internet system assisting in real estate appraisal. All experiments were performed using 28 real-world datasets composed of data taken from a cadastral system and GIS data derived from a cadastral map. The analysis of the results was performed using recently proposed statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple 1×n and n×n comparisons. GLM (general linear model) architectures of mixture of experts achieved better results for ME with an adaptive variance parameter for each expert, whereas MLP (multilayer perceptron) architectures - for standard mixtures of experts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcalá-Fdez, J., et al.: KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems. Soft Computing 13(3), 307–318 (2009)
Avnimelech, R., Intrator, N.: Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11(2), 483–497 (1999)
Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
Caragea, C., Sinapov, J., Dobbs, D., Honavar, V.: Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling. BMC Bioinformatics 10(Suppl. 4), S4 (2009)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Ebrahimpour, R., Kabir, E., Esteky, H., Yousefi, M.R.: View-independent face recognition with Mixture of Experts. Neurocomputing 71, 1103–1107 (2008)
Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences 55(1), 119–139 (1997)
García, S., Herrera, F.: An Extension on Statistical Comparisons of Classifiers over Multiple Data Sets for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)
Goodband, J.H., Haas, O.C.L., Mills, J.A.: A mixture of experts committee machine to design compensators for intensity modulated radiation therapy. Pattern Recog. 39, 1704–1714 (2006)
Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 340–350. Springer, Heidelberg (2010)
Güler, I., Übeyli, E.D.: A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence 18, 845–856 (2005)
Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)
Hashem, S.: Optimal linear combinations of neural networks. Neural Net. 10(4), 599–614 (1997)
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)
Jianping, D., Bouchard, M., Yeap, T.H.: Linear Dynamic Models With Mixture of Experts Architecture for Recognition of Speech Under Additive Noise Conditions. IEEE Signal Processing Letters 13(9), 573–576 (2006)
Jordan, M.I., Jacobs, R.A.: Hierachical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)
Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Inf. Proc. Systems, pp. 231–238. MIT Press, Cambridge (1995)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)
Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification. Information Sciences 177(10), 2049–2074 (2007)
Luengo, J., García, S., Herrera, F.: A Study on the Use of Statistical Tests for Experimentation with Neural Networks: Analysis of Parametric Test Conditions and Non-Parametric Tests. Expert Systems with Applications 36, 7798–7808 (2009)
Mitchell, H.B.: Multi-Sensor Fusion: An Introduction. Springer, Heidelberg (2007)
Moerland, P.: Some methods for training mixtures of experts, Technical Report IDIAP-Com 97-05, IDIAP Research Institute (1997)
Ng, S.K., McLachlan, G.J.: Extension of Mixture-of-experts networks for binary classification of hierachical data. Artificial Intelligence in Medicine 41, 51–67 (2007)
Polikar, R.: Ensemble Learning. Scholarpedia 4(1), 2776 (2009)
Rahman, A.F.R., Fairhurst, M.C.: A new hybrid approach in combining multiple experts to recognize handwritten numerals. Pattern Recognition Letters 18(8), 781–790 (1997)
Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33, 1–39 (2010)
Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5(2), 197–227 (1990)
Srivastava, A.N., Su, R., Weigend, A.S.: Data mining for features using scale-sensitive gated experts. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1268–1279 (1999)
Wolpert, D.H.: Stacked Generalization. Neural Networks 5(2), 241–259 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graczyk, M., Lasota, T., Telec, Z., Trawiński, B. (2010). Application of Mixture of Experts to Construct Real Estate Appraisal Models. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-13769-3_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13768-6
Online ISBN: 978-3-642-13769-3
eBook Packages: Computer ScienceComputer Science (R0)