Abstract
The denoising of a natural signal/image corrupted by Gaussian white noise is a classical problem in signal/image processing. However, it is still in its infancy to denoise high dimensional data. In this paper, we extended Sendur and Selesnick’s bivariate wavelet thresholding from two-dimensional image denoising to three dimensional data denoising. Our study shows that bivariate wavelet thresholding is still valid for three dimensional data. Experimental results confirm its superiority.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
Chen, G.Y., Bui, T.D.: Multiwavelet denoising using neighbouring Coefficients. IEEE Signal Processing Letters 10(7), 211–214 (2003)
Bui, T.D., Chen, G.Y.: Translation-invariant denoising using multiwavelets. IEEE Transactions on Signal Processing 46(12), 3414–3420 (1998)
Chen, G.Y., Bui, T.D., Krzyzak, A.: Image denoising using neighbouring wavelet coefficients. Integrated Computer-Aided Engineering 12(1), 99–107 (2005)
Chen, G.Y., Bui, T.D., Krzyzak, A.: Image Denoising with Neighbour Dependency and Customized Wavelet and Threshold. Pattern Recognition 38(1), 115–124 (2005)
Chen, G.Y., Kegl, B.: Image denoising with complex ridgelets. Pattern Recognition 40(2), 578–585 (2007)
Chen, G.Y., Qian, S.E.: Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis. Canadian Journal of Remote Sensing 34(5), 447–454 (2008)
Chen, G.Y., Qian, S.E.: Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. International Journal of Remote Sensing (to appear)
Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)
Sendur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters 9(12), 438–441 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, G., Bui, T.D., Krzyzak, A. (2010). Denoising of Three Dimensional Data Cube Using Bivariate Wavelet Shrinking. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-13772-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13771-6
Online ISBN: 978-3-642-13772-3
eBook Packages: Computer ScienceComputer Science (R0)