Skip to main content

Denoising of Three Dimensional Data Cube Using Bivariate Wavelet Shrinking

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Included in the following conference series:

Abstract

The denoising of a natural signal/image corrupted by Gaussian white noise is a classical problem in signal/image processing. However, it is still in its infancy to denoise high dimensional data. In this paper, we extended Sendur and Selesnick’s bivariate wavelet thresholding from two-dimensional image denoising to three dimensional data denoising. Our study shows that bivariate wavelet thresholding is still valid for three dimensional data. Experimental results confirm its superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, G.Y., Bui, T.D.: Multiwavelet denoising using neighbouring Coefficients. IEEE Signal Processing Letters 10(7), 211–214 (2003)

    Article  Google Scholar 

  3. Bui, T.D., Chen, G.Y.: Translation-invariant denoising using multiwavelets. IEEE Transactions on Signal Processing 46(12), 3414–3420 (1998)

    Article  Google Scholar 

  4. Chen, G.Y., Bui, T.D., Krzyzak, A.: Image denoising using neighbouring wavelet coefficients. Integrated Computer-Aided Engineering 12(1), 99–107 (2005)

    Google Scholar 

  5. Chen, G.Y., Bui, T.D., Krzyzak, A.: Image Denoising with Neighbour Dependency and Customized Wavelet and Threshold. Pattern Recognition 38(1), 115–124 (2005)

    Article  Google Scholar 

  6. Chen, G.Y., Kegl, B.: Image denoising with complex ridgelets. Pattern Recognition 40(2), 578–585 (2007)

    Article  MATH  Google Scholar 

  7. Chen, G.Y., Qian, S.E.: Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis. Canadian Journal of Remote Sensing 34(5), 447–454 (2008)

    Google Scholar 

  8. Chen, G.Y., Qian, S.E.: Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. International Journal of Remote Sensing (to appear)

    Google Scholar 

  9. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  10. Sendur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters 9(12), 438–441 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G., Bui, T.D., Krzyzak, A. (2010). Denoising of Three Dimensional Data Cube Using Bivariate Wavelet Shrinking. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics