Abstract
A cryptographic pairing evaluates as an element of a finite extension field, and the evaluation itself involves a considerable amount of extension field arithmetic. It is recognised that organising the extension field as a “tower” of subfield extensions has many advantages. Here we consider criteria that apply when choosing the best towering construction, and the associated choice of irreducible polynomials for the implementation of pairing-based cryptosystems. We introduce a method for automatically constructing efficient towers for more classes of finite fields than previous methods, some of which allow faster arithmetic.
We also show that for some families of pairing-friendly elliptic curves defined over \(\mathbb{F}_{p}\) there are a large number of instances for which an efficient tower extension \(\mathbb{F}_{p^k}\) is given immediately if the parameter defining the prime characteristic of the field satisfies a few easily checked equivalences.
Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEEE P1363.3: Standard for identity-based cryptographic techniques using pairings. Draft 3: Section 5.3.2, http://grouper.ieee.org/groups/1363/IBC/index.html
Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the Tate pairing. Cryptology ePrint Archive, Report 2009/155 (2009), http://eprint.iacr.org/
Bailey, D., Paar, C.: Optimal extension fields for fast arithmetic in public-key algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)
Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 263–273. Springer, Heidelberg (2003)
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, Boca Raton (2005)
Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)
Dominguez Perez, L.J., Scott, M.: Automatic generation of optimised cryptographic pairing functions. In: SPEED-CC Workshop Record– Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers, vol. 1, pp. 55–71 (2009)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology 23 (2010)
Galbraith, S., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2010)
Granger, R., Page, D., Stam, M.: On small characteristic algebraic tori in pairing based cryptography. LMS Journal of Computation and Mathematics 9, 64–85 (2006)
Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Information Theory 52, 4595–4602 (2006)
Kachisa, E., Schaefer, E., Scott, M.: Constructing Brezing-Weng pairing friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)
Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)
Lee, E., Lee, H., Park, C.: Efficient and generalized pairing computation on abelian varieties. IEEE Trans. Information Theory 55, 1793–1803 (2009)
Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Heidelberg (2000)
Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)
Baktır, S., Sunar, B.: Optimal tower fields. IEEE Transactions on Computers 53(10), 1231–1243 (2004)
Scott, M.: A note on twists for pairing friendly curves, ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf
Scott, M., Barreto, P.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/032/
Shirase, M.: Universally constructing 12-th degree extension field for ate pairing. Cryptology ePrint Archive, Report 2009/623 (2009), http://eprint.iacr.org/
Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benger, N., Scott, M. (2010). Constructing Tower Extensions of Finite Fields for Implementation of Pairing-Based Cryptography. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-13797-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13796-9
Online ISBN: 978-3-642-13797-6
eBook Packages: Computer ScienceComputer Science (R0)