Skip to main content

Convergence of Probability Collectives with Adaptive Choice of Temperature Parameters

  • Conference paper
Learning and Intelligent Optimization (LION 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6073))

Included in the following conference series:

  • 1367 Accesses

Abstract

There are numerous applications of multi-agent systems like disaster management [1], sensor networks [2], traffic control [3] and scheduling problems [4] where agents should coordinate to achieve a common goal. In most of these cases a centralized solution is inefficient because of the scale and the complexity of the problems and thus distributed solutions are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In: Proc. of IEEE Conf. on System, Man and Cybernetics, 5 pages. (1999)

    Google Scholar 

  2. Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in wireless sensor networks. ACM Trans. Sen. Netw. 5(3), 1–35 (2009)

    Article  Google Scholar 

  3. van Leeuwen, P., Hesselink, H., Rohling, J.: Scheduling aircraft using constraint satisfaction. Electr. Notes Theor. Comput. Sci. 76 (2002)

    Google Scholar 

  4. Stranjak, A., Dutta, P.S., Ebden, M., Rogers, A., Vytelingum, P.: A multi-agent simulation system for prediction and scheduling of aero engine overhaul. In: AAMAS 2008: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, pp. 81–88 (2008)

    Google Scholar 

  5. Wolpert, D.H., Tumer, K.: An introduction to collective intelligence. Technical report, NASA (1999)

    Google Scholar 

  6. Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: A game-theoretical formulation. Journal of Dynamic Systems, Measurement, and Control 129(5), 584–596 (2007)

    Article  Google Scholar 

  7. Crites, R.H., Barto, A.: Improving elevator performance using reinforcement learning. Advances in Neural Information Processing Systems 8 (1996)

    Google Scholar 

  8. Littman, M.: Markov games as a framework for multiagent reinforcement learning. In: Proceedings of the Eleventh International Conference of Machine learning (1994)

    Google Scholar 

  9. Uther, W., Veloso, M.: Adversarial reinforcement learning. Technical report, Carnegie Mellon University (1997)

    Google Scholar 

  10. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215–250 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fudenberg, D., Levine, D.: The theory of Learning in Games. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wolpert, D.H., Strauss, C.E.M., Rajnarayan, D.: Advances in distributed optimization using probability collectives. Advances in Complex Systems (ACS) 9(04), 383–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leslie, D.S., Collins, E.: Generalised weakened fictitious play. Games and Economic Behavior 56(2), 285–298 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smyrnakis, M., Leslie, D.S. (2010). Convergence of Probability Collectives with Adaptive Choice of Temperature Parameters. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13800-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13799-0

  • Online ISBN: 978-3-642-13800-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics