Abstract
This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot’s acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ica:dtu site, http://isp.imm.dtu.dk/toolbox/ica/index.html
Graña, M., Torrealdea, F.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)
Graña, M.: A brief review of Lattice Computing. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), June 2008, pp. 1777–1781 (2008)
Graña, M., Savio, A.M., GarcĂa-SebastiĂ¡n, M., Fernandez, E.: A Lattice Computing approach for on-line fMRI analysis. Image and Vision Computing (in Press Corrected Proof, 2009)
Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two Lattice Computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John Wiley and Sons, Chichester (2001)
Højen-Sørensen, P., Winther, O., Hansen, L.K.: Mean-field approaches to independent component analysis. Neural Computation 14(4), 889–918 (2002)
Jones, S., Andresen, C., Crowley, J.: Appearance based process for visual navigation. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1997, September 1997, vol. 2, pp. 551–557 (1997)
Keshava, N., Mustard, J.: Spectral unmixing. IEEE Signal Processing Magazine 19(1), 44–57 (2002)
Kröse, B., Vlassis, N., Bunschoten, R.: Omnidirectional vision for Appearance-Based robot localization. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds.) Dagstuhl Seminar 2000. LNCS, vol. 2238, pp. 39–50. Springer, Heidelberg (2002)
Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters 72, 3634–3637 (1994)
Munguia, R., Grau, A., Sanfeliu, A.: Matching images features in a wide base line with ICA descriptors. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 2, pp. 159–162 (2006)
Ritter, G.X., Gader, P.: Fixed points of Lattice Transforms and Lattice Associative Memories. In: Advances in Imaging and Electron Physics, vol. 144, pp. 165–242. Elsevier, Amsterdam (2006)
Ritter, G.X., Urcid, G., Schmalz, M.: Autonomous single-pass endmember approximation using Lattice Auto-Associative Memories. Neurocomputing 72(10-12), 2101–2110 (2009)
Sim, R., Dudek, G.: Learning generative models of scene features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 406–412 (2001)
Sussner, P., Valle, M.: Gray-scale Morphological Associative Memories. IEEE Transactions on Neural Networks 17(3), 559–570 (2006)
Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological localization. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1023–1029 (2000)
Urcid, G., Valdiviezo, J.C.: Generation of lattice independent vector sets for pattern recognition applications. In: Ritter, G.X., Schmalz, M.S., Barrera, J., Astola, J.T. (eds.) Proc. of SPIE 2007, Math. of Data/Image Pattern Recog. Compression, Coding and Encrip. with Applications X, vol. 6700, pp. 67000C:1–12. SPIE, San Jose (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Villaverde, I., Fernandez-Gauna, B., Zulueta, E. (2010). Lattice Independent Component Analysis for Mobile Robot Localization. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13803-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-13803-4_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13802-7
Online ISBN: 978-3-642-13803-4
eBook Packages: Computer ScienceComputer Science (R0)