Skip to main content

Client + Cloud: Evaluating Seamless Architectures for Visual Data Analytics in the Ocean Sciences

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6187))

  • 1957 Accesses

Abstract

Science is becoming data-intensive, requiring new software architectures that can exploit resources at all scales: local GPUs for interactive visualization, server-side multi-core machines with fast processors and large memories, and scalable, pay-as-you-go cloud resources. Architectures that seamlessly and flexibly exploit all three platforms are largely unexplored. Informed by a long-term collaboration with ocean scientists, we articulate a suite of representative visual data analytics workflows and use them to design and implement a multi-tier immersive visualization system. We then analyze a variety of candidate architectures spanning all three platforms, articulate their tradeoffs and requirements, and evaluate their performance. We conclude that although “pushing the computation to the data” is generally the optimal strategy, no one single architecture is optimal in all cases and client-side processing cannot be made obsolete by cloud computing. Rather, rich visual data analytics applications benefit from access to a variety of cross-scale, seamless “client + cloud” architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barga, R.S., Jackson, J., Araujo, N., Guo, D., Gautam, N., Grochow, K., Lazowska, E.: Trident: Scientific Workflow Workbench for Oceanography. In: IEEE Congress on Services, pp. 465–466 (2008)

    Google Scholar 

  2. Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P.J., Silva, C.T., Freire, J.: VisTrails: Enabling Interactive Multiple-View Visualizations. In: IEEE Symposium on Visualization, p. 18 (2005)

    Google Scholar 

  3. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Scientific Programming 13, 219–237 (2005)

    Google Scholar 

  4. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18, 1039–1065 (2006)

    Article  Google Scholar 

  5. The Triana Project, http://www.trianacode.org

  6. MayaVi, http://mayavi.sourceforge.net/

  7. ParaView, http://www.paraview.org/

  8. The Visualization Toolkit, http://www.vtk.org

  9. Grochow, K., Stormer, M., Kelley, D., Delaney, J., Lazowska, E.: COVE: A Visual Environment for ocean observatory design. Physics Conference Series 125, 012092–012098 (2008)

    Article  Google Scholar 

  10. Windows Azure Platform, http://www.microsoft.com/windowsazure/

  11. McCormick, B.H., DeFanti, T.A., Brown, M.D.: Visualization in Scientific Computing. Computer Graphics 21 (1987)

    Google Scholar 

  12. Abram, G., Treinish, L.: An Extended Data-Flow Architecture for Data Analysis and Visualization. In: IEEE Symposium on Visualization, p. 263 (1995)

    Google Scholar 

  13. Bethel, E.W., Campbell, S., Dart, E., Shalf, J., Stockinger, K., Wu, K.: High Performance Visualization Using Query-Driven Visualization and Analytics. Lawrence Berkeley National Laboratory (2009)

    Google Scholar 

  14. Ma, K.-L., Wang, C., Yu, H., Moreland, K., Huang, J., Ross, R.: Next-Generation Visualization Technologies: Enabling Discoveries at Extreme Scale. SciDAC Review, 12–21 (2009)

    Google Scholar 

  15. Brodlie, K., Duce, D., Gallop, J., Sagar, M., Walton, J., Wood, J.: Visualization in Grid Computing Environments. Presented at the Proceedings of the conference on Visualization 2004 (2004)

    Google Scholar 

  16. Wu, Q., Gao, J., Zhu, M., Rao, N.S.V., Huang, J., Iyengar, S.: Self-Adaptive Configuration of Visualization Pipeline Over Wide-Area Networks. IEEE Trans. Comput. 57, 55–68 (2008)

    Article  MathSciNet  Google Scholar 

  17. Bright, L., Maier, D.: Efficient scheduling and execution of scientific workflow tasks. In: Scientific and Statistical Database Management, pp. 65–74 (2005)

    Google Scholar 

  18. Langguth, C., Ranaldi, P., Schuldt, H.: Towards Quality of Service in Scientific Workflows by Using Advance Resource Reservations. In: IEEE Congress on Services, vol. 0, pp. 251–258 (2009)

    Google Scholar 

  19. Wu, Q., Gu, Y., Bao, L., Jia, W., Dai, H., Chen, P.: Optimizing Distributed Execution of WS-BPEL Processes in Heterogeneous Computing Environments. Quality of Service in Heterogeneous Networks, 770–784 (2009)

    Google Scholar 

  20. Monterey Bay Aquarium Research Institute, http://www.mbari.org

  21. College of Ocean and Fishery Sciences, University of Washington, http://www.cofs.washington.edu/

  22. OPeNDAP: Open-source Project for a Network Data Access Protocol, http://opendap.org/

  23. OGC Web Map Service, http://portal.opengeospatial.org/standards/wms

  24. Boulos, J., Ono, K.: Cost estimation of user-defined methods in object-relational database systems. ACM SIGMOD Record. 28, 22–28 (1999)

    Article  Google Scholar 

  25. Jenter, H., Signell, R.: NetCDF: A public-domain software solution to data-access problems for numerical modelers. Preprints of the American Society of Civil Engineers Conference on Estuarine and Coastal Modeling, 72 (1992)

    Google Scholar 

  26. Woods Hole Oceanographic Institution Submersibles, http://www.whoi.edu/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grochow, K., Howe, B., Stoermer, M., Barga, R., Lazowska, E. (2010). Client + Cloud: Evaluating Seamless Architectures for Visual Data Analytics in the Ocean Sciences. In: Gertz, M., Ludäscher, B. (eds) Scientific and Statistical Database Management. SSDBM 2010. Lecture Notes in Computer Science, vol 6187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13818-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13818-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13817-1

  • Online ISBN: 978-3-642-13818-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics