Abstract
Science is becoming data-intensive, requiring new software architectures that can exploit resources at all scales: local GPUs for interactive visualization, server-side multi-core machines with fast processors and large memories, and scalable, pay-as-you-go cloud resources. Architectures that seamlessly and flexibly exploit all three platforms are largely unexplored. Informed by a long-term collaboration with ocean scientists, we articulate a suite of representative visual data analytics workflows and use them to design and implement a multi-tier immersive visualization system. We then analyze a variety of candidate architectures spanning all three platforms, articulate their tradeoffs and requirements, and evaluate their performance. We conclude that although “pushing the computation to the data” is generally the optimal strategy, no one single architecture is optimal in all cases and client-side processing cannot be made obsolete by cloud computing. Rather, rich visual data analytics applications benefit from access to a variety of cross-scale, seamless “client + cloud” architectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barga, R.S., Jackson, J., Araujo, N., Guo, D., Gautam, N., Grochow, K., Lazowska, E.: Trident: Scientific Workflow Workbench for Oceanography. In: IEEE Congress on Services, pp. 465–466 (2008)
Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P.J., Silva, C.T., Freire, J.: VisTrails: Enabling Interactive Multiple-View Visualizations. In: IEEE Symposium on Visualization, p. 18 (2005)
Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Scientific Programming 13, 219–237 (2005)
Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18, 1039–1065 (2006)
The Triana Project, http://www.trianacode.org
MayaVi, http://mayavi.sourceforge.net/
ParaView, http://www.paraview.org/
The Visualization Toolkit, http://www.vtk.org
Grochow, K., Stormer, M., Kelley, D., Delaney, J., Lazowska, E.: COVE: A Visual Environment for ocean observatory design. Physics Conference Series 125, 012092–012098 (2008)
Windows Azure Platform, http://www.microsoft.com/windowsazure/
McCormick, B.H., DeFanti, T.A., Brown, M.D.: Visualization in Scientific Computing. Computer Graphics 21 (1987)
Abram, G., Treinish, L.: An Extended Data-Flow Architecture for Data Analysis and Visualization. In: IEEE Symposium on Visualization, p. 263 (1995)
Bethel, E.W., Campbell, S., Dart, E., Shalf, J., Stockinger, K., Wu, K.: High Performance Visualization Using Query-Driven Visualization and Analytics. Lawrence Berkeley National Laboratory (2009)
Ma, K.-L., Wang, C., Yu, H., Moreland, K., Huang, J., Ross, R.: Next-Generation Visualization Technologies: Enabling Discoveries at Extreme Scale. SciDAC Review, 12–21 (2009)
Brodlie, K., Duce, D., Gallop, J., Sagar, M., Walton, J., Wood, J.: Visualization in Grid Computing Environments. Presented at the Proceedings of the conference on Visualization 2004 (2004)
Wu, Q., Gao, J., Zhu, M., Rao, N.S.V., Huang, J., Iyengar, S.: Self-Adaptive Configuration of Visualization Pipeline Over Wide-Area Networks. IEEE Trans. Comput. 57, 55–68 (2008)
Bright, L., Maier, D.: Efficient scheduling and execution of scientific workflow tasks. In: Scientific and Statistical Database Management, pp. 65–74 (2005)
Langguth, C., Ranaldi, P., Schuldt, H.: Towards Quality of Service in Scientific Workflows by Using Advance Resource Reservations. In: IEEE Congress on Services, vol. 0, pp. 251–258 (2009)
Wu, Q., Gu, Y., Bao, L., Jia, W., Dai, H., Chen, P.: Optimizing Distributed Execution of WS-BPEL Processes in Heterogeneous Computing Environments. Quality of Service in Heterogeneous Networks, 770–784 (2009)
Monterey Bay Aquarium Research Institute, http://www.mbari.org
College of Ocean and Fishery Sciences, University of Washington, http://www.cofs.washington.edu/
OPeNDAP: Open-source Project for a Network Data Access Protocol, http://opendap.org/
OGC Web Map Service, http://portal.opengeospatial.org/standards/wms
Boulos, J., Ono, K.: Cost estimation of user-defined methods in object-relational database systems. ACM SIGMOD Record. 28, 22–28 (1999)
Jenter, H., Signell, R.: NetCDF: A public-domain software solution to data-access problems for numerical modelers. Preprints of the American Society of Civil Engineers Conference on Estuarine and Coastal Modeling, 72 (1992)
Woods Hole Oceanographic Institution Submersibles, http://www.whoi.edu/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grochow, K., Howe, B., Stoermer, M., Barga, R., Lazowska, E. (2010). Client + Cloud: Evaluating Seamless Architectures for Visual Data Analytics in the Ocean Sciences. In: Gertz, M., Ludäscher, B. (eds) Scientific and Statistical Database Management. SSDBM 2010. Lecture Notes in Computer Science, vol 6187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13818-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-13818-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13817-1
Online ISBN: 978-3-642-13818-8
eBook Packages: Computer ScienceComputer Science (R0)