
In Proceedings of the 19th International Conference on Inductive Logic Programming (ILP-09), Leuven, Belgium, July 2009.

Speeding up Inference in Statistical Relational Learning

by Clustering Similar Query Literals

Lilyana Mihalkova⋆1 and Matthew Richardson2

1 The University of Texas at Austin, lilyanam@cs.utexas.edu
2 Microsoft Research, mattri@microsoft.com

Abstract. Markov logic networks (MLNs) have been successfully applied to

several challenging problems by taking a “programming language” approach

where a set of formulas is hand-coded and weights are learned from data. Be-

cause inference plays an important role in this process, “programming” with an

MLN would be significantly facilitated by speeding up inference. We present

a new meta-inference algorithm that exploits the repeated structure frequently

present in relational domains to speed up existing inference techniques. Our ap-

proach first clusters the query literals and then performs full inference for only

one representative from each cluster. The clustering step incurs only a one-time

up-front cost when weights are learned over a fixed structure.

1 Introduction

Markov logic networks (MLNs) [13] represent knowledge as a set of weighted first-

order clauses and have been successfully applied to a variety of challenging tasks, such

as information extraction [12], and ontology refinement [19], among others. In these

applications, MLNs are treated as a “programming language” where a human manually

codes a set of formulas, for which weights are learned from the data. This strategy takes

advantage of the relative strengths of humans and computers: human experts understand

the structure of a domain but are known to be poor at estimating probabilities. By having

the human experts define the domain, and the computer train the model empirically from

data, MLNs can take advantage of both sets of skills.

Nevertheless, producing an effective set of MLN clauses is not foolproof and in-

volves several trial-and-error steps, such as determining an appropriate data represen-

tation and tuning the parameters of the weight learner. Inference features prominently

throughout this process. It is used not only to test and use the final model, but also mul-

tiple rounds of inference are performed by many popular weight learners [6]. Therefore,

just as the availability of fast compilers significantly simplifies software development,

“programming” with an MLN would be facilitated by speeding up inference.

This paper presents a novel meta-inference approach that can speed up any avail-

able inference algorithm B by first clustering the query literals based on the evidence

that affects their probability of being true. Inference is performed using B for a single

representative of each cluster, and the inferred probability of this representative is as-

signed to all other cluster members. In the restricted case, when clauses in the MLN

each contain at most one unknown literal, our approach returns the same probability

estimates as performing complete inference using B, modulo random variation of B.

We call our approach BAM for Break And Match inference.

⋆ A significant portion of this work was completed at Microsoft Research.

2 Background on MLNs
An MLN [13] consists of a set of weighted first-order clauses. Let X be the set of all

propositions describing a world, Q be a set of query atoms, and E be a set of evidence

atoms. Without loss of generality, we assume that E∪Q = X. Further, let F be the set

of all clauses in the MLN, wi be the weight of clause fi, and ni(q, e) be the number

of true groundings of fi on truth assignment (q, e). The probability that the atoms in

Q have a particular truth assignment, given as evidence the values of atoms in E is

P (Q = q|E = e) = 1
Z

exp
(

∑

fi∈F
wini(q, e)

)

. Ground clauses satisfied by the

evidence E do not affect the probability. Thus, a ground clause G containing atoms

from E falls in one of two categories: (A) G is satisfied by the evidence and can be

ignored, or (B) all literals from E that appear in G are false and G can be simplified by

removing these literals.

In its most basic form, inference over an MLN is performed by first grounding it

out into a Markov network (MN) [9], as described by Richardson and Domingos [13].

Although several approaches to making this process more efficient have been developed

(e.g. [17], which reduces the memory requirement, and [16], which speeds up the pro-

cess of grounding the MLN), this basic approach is most useful to understanding BAM.

Given a set of constants, the ground MN of an MLN is formed by including a node

for each ground atom and forming a clique over any set of nodes that appear together

in a ground clause. Inference over the ground MN is intractable in general, so MCMC

approaches have been introduced. We use MC-SAT as the base inference procedure be-

cause it has been demonstrated to be faster and more accurate than other methods [11].

However, BAM is independent of the base inference algorithm.

3 Speeding Up Inference using BAM

We first describe BAM in the case where each of the clauses in the MLN contains at

most one unknown literal. This case, which we call restricted, arises in several ap-

plications, such as when modelling the function of independent chemical compounds

whose molecules have relational structure [2]. In the restricted case, the ground MN

constructed from the given MLN consists of a set of disconnected query nodes. Thus

the probability of each query literal Q ∈ Q being true can be computed independently

of the rest and depends only on the number of groundings of each MLN clause that

contain Q and fall in category (B) described in Sect. 2. This probability is given by:

P (Q = q|E = e) =
exp

“

P

fi∈F
wi·ni,Q(q)

”

exp
“

P

fi∈F
wi·ni,Q(0)

”

+exp
“

P

fi∈F
wi·ni,Q(1)

” , where ni,Q(q) is

the number of groundings of clause i that contain Q and are true when setting Q = q.

In the restricted case, these counts constitute the query signature of a literal, i.e., the

signature for a literal Q consists of a set of (Ci, ni) pairs where, for each clause Ci, ni

is the number of groundings of Ci containing Q that are not satisfied by the evidence.

Literals with the same query signature have the same probability of being true. We can

therefore partition all literals from Q into clusters of literals with identical signatures.

The probability of only one representative from each cluster is calculated and can be

assigned to all other members of the cluster. This is formalized in Alg. 1.

The algorithm in the general case differs only in the way query signatures are com-

puted. The intuition behind our approach is that the influence a node has on the query

node diminishes as we go further away from it. So, by going enough steps away, we can

Algorithm 1 Break and Match Inference (BAM)

1: Q: set of ground query literals, B: Base inference algorithm

2: for each Q ∈ Q do

3: SIGQ = calculateQuerySignature(Q,0) (Alg. 2 in general case)

4: Partition Q into clusters of queries with identical signatures.

5: for each Cluster K found above do

6: Pick an arbitrary query literal from K as the representative R

7: Calculate P (R = true) using B on the portion of the MN used to calculate SIGR.

8: for each Q ∈ K do

9: Set P (Q = true) = P (R = true)

Algorithm 2 calculateQuerySignature(Q, d) (General case)

1: Input: Q, query literal whose signature is being computed

2: Input: d, depth of literal

3: if d == maxDepth then

4: Return value (0 or 1) assigned to Q by MaxWalkSat

5: for each Grounding G of a clause in the MLN that contains Q do

6: for each Unknown literal U in G whose signature is not yet computed, U 6= Q do

7: SIGU =calculateQuerySignature(U, d + 1)
8: for each Unground clause C in the MLN do

9: for each Distinct way a of assigning signature identifiers to the other unknown literals in

groundings of C that contain Q do

10: Include a triple C, a, n in the signature where n is the number of times the particular

assignment a was observed

11: Return the unique identifier for the signature

perform a simple approximation to the value of the distant nodes, while only slightly

affecting the accuracy of inference. The signature of each node is computed using a

recursive procedure based on the signatures of the nodes adjacent to it. The probability

that a node Q is true depends on the probabilities that its adjacent nodes are true. The

adjacent nodes are those with which Q participates in common clauses. The probability

that each adjacent node is true, on the other hand, depends on the probabilities that its

adjacent nodes are true and so on. In this way, BAM expands into the ground MN until it

reaches a pre-defined depth maxDepth. We used maxDepth = 2 in the experiments.

At this point, it cuts off the expansion by assigning to the outermost nodes their most

likely values found using the MaxWalkSat algorithm [4]. If Q is selected as a cluster

representative in Alg. 1, inference to determine its probability of being true will be car-

ried out only over this portion of the MN (line 7 of Alg. 1). Alg. 2 formalizes the query

signature calculation process. Rather than returning the signature itself, Alg. 2 returns

a unique identifier associated with each unique signature. In this way, the clustering of

nodes occurs alongside the calculation of their signatures, and signatures can be effi-

ciently compared once their identifiers are determined. The identifiers of the outermost

nodes whose values are set using MaxWalkSat are 1 (0) for true (false) assignments.

When BAM is used for weight-learning, all signatures can be computed up-front

because the signature does not depend on clause weights. In this case, MaxWalkSat

cannot be employed because it needs the clause weights. A simple solution is to assign

arbitrary values to the outer-most nodes. We experimented with setting the values of all

outer-most nodes to false and observed that the accuracy of inference degrades only

slightly. These experiments, omitted for space, will appear in the long version.

The running time of BAM may suffer because inference may be performed several

times for the same query literal. This happens because the portion of the MN over which

we perform inference in order to compute the probability of the cluster representative

R contains additional literals that may themselves be chosen as representatives or may

appear in the MNs of multiple representatives. To address this problem, we modified the

algorithm to perform inference for more than one representative at a time: suppose we

would like to perform inference for literal L1 from cluster C1, but this would involve

inference over literal L2 from cluster C2. If C2 is not yet represented, we include in

the MN all the literals up to the desired depth necessary for inference over L2 as well.

If a cluster is already represented, further representatives are not considered.

4 Experimental Set-Up and Results

We implemented BAM within Alchemy [5] and used the implementation of MC-SAT

provided with it. MC-SAT was run as a stand-alone inference algorithm and as the base

inference algorithm of BAM. In both cases, the same parameter settings were used: all

of Alchemy’s defaults were kept, except that the number of sampling steps was set

to 10, 000 in order to decrease the amount of variation due to sampling and to better

simulate a scenario in which BAM is used in the loop of weight-learning. We compared

the systems in terms of inference time and average conditional log-likelihood (CLL).

To control the size and complexity of the models, we used a heuristic procedure3

to generate synthetic MLNs and corresponding datasets in which we varied the number

objects and clauses and the complexity of the clauses. We considered 2 levels of clause

complexity. In type 1, all clauses mention the unknown (target) predicate just once. In

type 2, half of the clauses mention the unknown predicate once, and the rest mention it

twice. We considered models that contained 5 or 10 clauses and domains that contained

100, 150, or 200 constants. For each dataset/MLN pair generated above, we performed

5 random runs with each of the two systems, using the same random seed and the same

dedicated machine for each system within a run. When performing inference for cluster

representatives, BAM executed the same code as that executed by MC-SAT.

We additionally tested BAM on the UW-CSE domain [13]4 using models5 learned

with BUSL, which gave good predictive accuracy on this data set [7]. We used the MLNs

from the last point on the learning curve, which were trained on all but one of the

available examples. Thus, there are five possible models, one for each of the examples

left out for testing. The goal of inference was to predict the advisedBy relation.

Fig. 1 summarizes the results on synthetic data. As can be seen from the table in

this figure, the difference in the CLL values of MC-SAT and BAM is very small; thus,

BAM is able to mirror the quality of probability estimates output by MC-SAT. Moreover,

BAM runs consistently faster than MC-SAT, and the improvement in speed increases as

the number of constants in the domain grows. On average BAM performed inference

over 37% of the query atoms in domains with 100 constants; 42% in domains with 150

constants; and 31% in domains with 200 constants.

3 The procedure, which models sparsity in relational data, will be described in the long version.
4 Available from http://alchemy.cs.washington.edu/ under “Datasets.”
5 Available from http://www.cs.utexas.edu/˜ml/mlns/ under “BUSL.”

Exp. mcsat bam Diff.

100,5,1 -0.067 -0.067 -0.000

150,5,1 -0.064 -0.064 0.000

200,5,1 -0.061 -0.061 -0.000

100,5,2 -0.338 -0.316 0.021

150,5,2 -0.344 -0.340 0.004

200,5,2 -0.220 -0.207 0.014

100,10,1 -0.080 -0.080 -0.000

150,10,1 -0.069 -0.069 -0.000

200,10,1 -0.068 -0.068 -0.000

100,10,2 -0.491 -0.489 0.001

150,10,2 -0.598 -0.614 -0.015

200,10,2 -0.668 -0.668 -0.000

Fig. 1. The table above shows the average CLL of MC-SAT and BAM. The “Exp.” column de-

scribes the experiment as a (number of objects), (number of clauses), (clause complexity type)

tuple. The difference is shown in the last column. A positive (negative) value shows a slight

advantage of BAM (MC-SAT). The bar graphs show the avg inference running time in minutes.

Example MC-SAT BAM Diff

1 (AI) -0.045 -0.045 0.000

2 (Graphics) -0.044 -0.052 -0.008

3 (Language) -0.060 -0.060 0.000

4 (Systems) -0.040 -0.055 -0.015

5 (Theory) -0.031 -0.031 -0.000

Inference Running Time in UW-CSE Domain

0

50

100

150

200

250

1 2 3 4 5

Test Example

S
e
c
o
n
d
s

MC-Sat Time

BAM Time

Fig. 2. The table above shows the average CLL of MC-SAT and BAM on each of the test examples,

with the difference in CLL shown in the last column. A positive (negative) value shows a slight

advantage of (BAM) MC-SAT. The bar graphs show the average inference time in seconds. All

times are plotted, although some are extremely small.

Fig. 2 shows the comparison in the UW-CSE domain. The table on the left of this

figure shows that MC-SAT and BAM produce probability estimates of similar quality,

and the bar plot demonstrates that BAM is consistently faster than MC-SAT. On average,

BAM was 12.07 times faster than MC-SAT and performed actual inference only for 6%
of the unknown query atoms on average over the five test examples.

In all experiments, the results of inference exhibited very little variance across the

random runs. Variance is therefore not reported to reduce clutter.

5 Related And Future Work

BAM is related to work on lifted inference in which variable elimination (VE), aided by

clever counting and ordering heuristics, is used to eliminate a large number of instan-

tiations of variables at once [10, 1, 8]. Sen et al. [14] introduce an algorithm, based on

VE, that constructs a graph whose nodes represent the original and intermediate fac-

tors used by VE. By inspecting this graph and carefully computing node labels, factors

that carry out identical computations are identified. In a recent extension, [15], to al-

low for approximate inference, the authors exploit the idea that the influence between

two nodes diminishes as the distance between them increases, analogous to the idea

exploited in the present work. Jaimovich et al. [3] introduce an algorithm based on be-

lief propagation in which inference is performed on the template, i.e. variablized, level.

Their approach targets the case when no evidence is present and has been extended to

the case when evidence is present [18]. The approaches based on belief propagation

calculate exact probabilities when belief propagation would, but suffer from the same

limitations as ordinary belief propagation in the presence of loops. All above techniques

are tied to a particular inference approach and are therefore better viewed as stand-alone

inference algorithms, in contrast to BAM, which is a meta-inference technique in that it

can be applied to any existing inference algorithm.

In the future, we plan to extend BAM to allow “soft” query signature matching, so

that signatures need only be very similar to each other to be placed in the same cluster.

We would also like to provide a method for quickly recomputing query signatures as

the clauses of the MLN are refined, allowing BAM to be used for structure learning.

Acknowledgment: We would like to thank Tuyen Huynh for helpful discussions and
the anonymous reviewers for their comments. Some of the experiments were run on the
Mastodon Cluster, provided by NSF Grant EIA-0303609, at UT Austin.

References

1. R. de Salvo Braz, E. Amir, and D. Roth. MPE and partial inversion in lifted probabilistic

variable elimination. AAAI-06.
2. P. Frasconi and A. Passerini. Probabilistic Inductive Logic Programming: Theory and Ap-

plications, chapter Learning with Kernels and Logical Representations. Springer, 2008.
3. A. Jaimovich, O. Meshi, and N. Friedman. Template based inference in symmetric relational

Markov random fields. UAI-07.
4. H. Kautz, B. Selman, and Y. Jiang. A General Stochastic Approach to Solving Problems

with Hard and Soft Constraints, volume 35 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, 1997.
5. S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alchemy system for statistical re-

lational AI. Technical report, Department of Computer Science and Engineering, University

of Washington, 2005. http://www.cs.washington.edu/ai/alchemy.
6. D. Lowd and P. Domingos. Efficient weight learning for Markov logic networks. PKDD-07.
7. L. Mihalkova and R. J. Mooney. Bottom-up learning of Markov logic network structure.

ICML-07.
8. B, Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelbling. Lifted probabilistic

inference with counting formulas. AAAI-08.
9. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Mateo,CA, 1988.
10. D. Poole. First-order probabilistic inference. IJCAI-03.
11. H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic

dependencies. AAAI-06.
12. H. Poon and P. Domingos. Joint inference in information extraction. AAAI-07.
13. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136,

2006.
14. P. Sen, A. Deshpande, and L. Getoor. Exploiting shared correlations in probabilistic

databases. VLDB-08.
15. P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based approximate lifted inference. UAI-

09. To appear.
16. J. Shavlik and S. Natarajan. Speeding up inference in Markov logic networks by preprocess-

ing to reduce the size of the resulting grounded network. IJCAI-09. To appear.
17. P. Singla and P. Domingos. Memory-efficient inference in relational domains. AAAI-06.
18. P. Singla and P. Domingos. Lifted first-order belief propagation. AAAI-08.
19. F. Wu and D. Weld. Automatically refining the Wikipedia infobox ontology. WWW-08.

