Skip to main content

Discovering Rules by Meta-level Abduction

  • Conference paper
Inductive Logic Programming (ILP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5989))

Included in the following conference series:

Abstract

This paper addresses discovery of unknown relations from incomplete network data by abduction. Given a network information such as causal relations and metabolic pathways, we want to infer missing links and nodes in the network to account for observations. To this end, we introduce a framework of meta-level abduction, which performs abduction in the meta level. This is implemented in SOLAR, an automated deduction system for consequence finding, using a first-order representation for algebraic properties of causality and the full-clausal form of network information and constraints. Meta-level abduction by SOLAR is powerful enough to infer missing rules, missing facts, and unknown causes that involve predicate invention in the form of existentially quantified hypotheses. We also show an application of rule abduction to discover certain physical techniques and related integrity constraints within the subject area of Skill Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa, K., Kobayashi, I., Inoue, K., Suwa, M.: Discovering knack by abductive reasoning. In: SIG-SKL (Skill Science). Japanese Society for Artificial Intelligence (January 2009) (in Japanese)

    Google Scholar 

  2. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)

    Article  MATH  Google Scholar 

  4. Inoue, K., Iwanuma, K., Nabeshima, H.: Consequence finding and computing answers with defaults. Journal of Intelligent Information Systems 26, 41–58 (2006)

    Article  Google Scholar 

  5. Inoue, K., Furukawa, K., Kobayashi, I.: Abducing rules with predicate invention. In: 19th International Conference on Inductive Logic Programming (ILP 2009), Leuven, Belgium (July 2009)

    Google Scholar 

  6. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an EM algorithm on BDDs. In: Proceedings of IJCAI 2009, pp. 810–815 (2009)

    Google Scholar 

  7. Iwanuma, K., Inoue, K.: Minimal answer computation and SOL. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 245–257. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Iwanuma, K., Inoue, K., Satoh, K.: Completeness of pruning methods for consequence finding procedure SOL. In: Proceedings of the 3rd International Workshop on First-Order Theorem Proving, pp. 89–100 (2000)

    Google Scholar 

  9. Kobayashi, I., Furukawa, K.: Modeling physical skill discovery and diagnosis by abduction. Information and Media Technologies 3(2), 385–398 (2008)

    Google Scholar 

  10. Kobayashi, I., Furukawa, K.: Hypothesis selection using domain theory in rule abductive support for skills. In: SIG-SKL (Skill Science). Japanese Society for Artificial Intelligence (August 2009) (in Japanese)

    Google Scholar 

  11. King, R.D., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  12. King, R.D., et al.: The automation of science. Science 324, 85–89 (2009)

    Article  Google Scholar 

  13. Muggleton, S., Bryant, C.: Theory completion and inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Muggleton, S., Buntine, W.: Machine invention of first-order predicate by inverting resolution. In: Proceedings of the 5th International Workshop on Machine Learning, pp. 339–351. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  15. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: a consequence finding system for advanced reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 257–263. Springer, Heidelberg (2003)

    Google Scholar 

  16. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction system for consequence finding. AI Communications, Special Issue on Practical Aspects of Automated Reasoning (2009) (to appear)

    Google Scholar 

  17. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36, 27–47 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ray, O., Inoue, K.: A consequence finding approach for full clausal abduction. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 173–184. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Reiser, P.G.K., King, R.D., Kell, D.B., Muggleton, S.H., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence 5-B2(024), 223–244 (2001)

    Google Scholar 

  20. Stickel, M.E.: Upside-down meta-interpretation of the model elimination theorem-proving procedure for deduction and abduction. Journal of Automated Reasoning 13(2), 189–210 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 65, 209–230 (2006)

    Article  Google Scholar 

  22. Yamamoto, Y., Inoue, K., Doncescu, A.: Integrating abduction and induction in biological inference using CF-Induction. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology. John Wiley & Sons, Chichester (2009) (to appear)

    Google Scholar 

  23. Zupan, B., Demšar, J., Bratko, I., Juvan, P., Halter, J., Kuspa, A., Shaulsky, G.: GenePath: a system for automated construction of genetic networks from mutant data. Bioinformatics 19(3), 383–389 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Furukawa, K., Kobayashi, I., Nabeshima, H. (2010). Discovering Rules by Meta-level Abduction. In: De Raedt, L. (eds) Inductive Logic Programming. ILP 2009. Lecture Notes in Computer Science(), vol 5989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13840-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13840-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13839-3

  • Online ISBN: 978-3-642-13840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics